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ABSTRACT:

We prove that any depth—3 circuit with MOD m
gates of unbounded fan-in on the lowest level, AND
gates on the second, and a weighted threshold gate on
the top needs either exponential size or exponential
weights to compute the wnner product of two vectors
of length n over GF(2). More exactly we prove that
log(wM) = Q(n), where w is the sum of the absolute
values of the weights, and M is the maximum fan—in of
the AND gates on level 2. Setting all weights to 1, we
have got a trade—off between the numbers of the MOD
m gates and the AND gates. By our knowledge, this
is the first trade—off result involving hard—to—handle
MOD m gates.

In contrast, with n AND gates at the bottom and
a single MOD 2 gate at the top one can compute the
mner product function.

The lower-bound proof does not use any mono-
tonicity or uniformity assumptions, and all of our gates
have unbounded fan—in. The key step in the proofis a
random evaluation protocol of a circuit with MOD m
gates.

1. INTRODUCTION

1.1 MOD p vs. MOD m gates

After the famous lower—bound result of Yao [Y5] and
Hastad [H] for Boolean circuits with AND, OR, and
NOT gates, the following question emerged [Ba]: What
happens if MOD / gates are also allowed in the circuit 7
Here £ is a positive integer, and a MOD /£ gate outputs
1 if the sum of its input—bits is divisible by £, and 0
otherwise.
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Razborov [R1] proved that the MAJORITY function
needs exponential size if it 1s computed by bounded-

depth circuits with AND, OR, NOT and MOD 2 gates.

Smolensky [Sm] generalized this result to circuits with
MOD p gates instead of MOD 2 ones, where p is a prime
or prime—power. The case, where p is a non-prime—
power composite number, remained widely open. No
lower bound was known even for depth—2 circuits with
MOD 6 gates only.

The depth-2 case was settled by Krause and Waack
[KrW]. They proved that any circuit with a MOD m
gate at the top and arbitrary symmetric gates at the
bottom needs exponential size to compute the ID(z, y)
function, where ID is defined as

_[lL =y,

ID(z,y) = 0 otherwise.

Beigel and Taru: [BT] proved that every function com-
puted by polynomial size, constant depth circuits of
AND, OR, NOT and MOD m gates, can also be com-
puted by a depth-2 circuit with a symmetric gate at
the top, and exp(logo(l) n) AND-gates at the bottom.

Allender and Gore [AG] proved that any uniform se-
quence of circuits of AND, OR, NOT, and MOD m
gates needs exponential size to compute the permanent
function. Using the uniformity assumption is essential
here, since without it, it is unknown whether there ex-
ists any language in NP, or, even in NEXP, which
cannot be computed with polynomial-size, bounded-
depth circuits of AND; OR, NOT, and MOD m gates,

where m is a non—prime—power positive integer.

Several results show that the computational properties
of the MOD m and MOD p gates differ [BBR], [KM],
[G], i.e. the MOD m gates, for non—prime—power m,
are “stronger” in some sense than the MOD p gates.
On the other hand, we have proved in [G] that depth-3
circuits with fan-in k¥ MOD m gates on the bottom,
arbitrary symmetric gates at the next, and threshold
gates at the top need exponential size to compute the
k-wise inner product function of [BNS], for any odd m
which satisfies m = k& (mod 2m). In particular, this re-
sult yields a lower bound to the case when the lower and
the middle level contain MOD m gates, and a threshold
gate is at the top.



By a result of Goldmann and Hastad [GH], if the
bottom fan—in is bounded by k—1, then arbitrary gates
can be allowed on the bottom. This shows that the
bound on the bottom fan—in is a strong assumption.

1.2 Our Results

A weighted threshold function y = ywp is a Boolean
function y : {0,1}* — {0, 1}, defined in the following

way:

. t
Yo, xa, .. xe) = { Loaf Yo wiwi > b

0 otherwise.

Integers w1, wa, ..., w; are the weights, integer b is the
threshold. A Boolean gate Y is a weighted threshold
gate if 1t computes a weighted threshold function.

Without uniformity conditions or fan—in restrictions,
we give here a weight—fan-in trade—off for depth—3 cir-
cuits with MOD m gates on the bottom:

Theorem 1. Let m and n be two positive integers,
and let C' be a depth-3 circuit with 2n input variables
= (21,%2,...,%2,) € {0,1}?" and their negations on
the input level, unbounded fan—in MOD m gates on the
first, unbounded fan—in AND gates on the second and
a weighted threshold gate Y with weights w1, wa, ..., wt
on the top. Let M denote the maximum fan—in of the
AND gates on the second level, and let

w=uw(C)= Z ;.

If C' computes the inner product

IP(z) = 29321'—19322' mod 2

i=1
for all x € {0,1}?", then

log(wM) = Q(n).

The size of the circuit is defined to be the number of
the wires in it. Since M is an obvious lower bound
to the size, Theorem 1 is also a size-—weight trade—off.
Another interpretation of Theorem 1 is the following:

Corollary 2. Suppose that in threshold gate Y every
weight is equal to 1. Let K denote the fan—in of gate
Y. Then

log(K M) = Q(n).

This result yields a trade—off between the fan—ins on
the top and on the second level; or, in other words,

between the numbers of the MOD m gates and the
AND gates in the circuit.

Proof. Use Theorem 1 with w =K. N1

One can also prove Theorem 1 for EXACT,, gates at
the bottom (these gates outputs 1 exactly when the
sum of their input bits is m), instead of MOD,,, ones.
Or, for a more general class:

Definition 3. Boolean function f : {0,1}* — {0,1}
is called pc—simple with parameter m (stays for
probabilistic-communication-simple), if for all I C
{1,2,...,4} there exist functions ur,vr : {0,1}% —
{1,2,...,m} such that

— ur depends only on variables {z; : 1 € I},

— vy depends only on variables {z; : i € {1,2,....£}—

I}, and

f(2) =1 <= ur(z) = vr ().

Example. MOD m gates compute a pc—simple func-
tion:

uIZ—E xz; mod m, vy = E

iel 1€{1,2,...}=1

z; mod m.

Or, EXAC'T,, gates also compute a pc—simple function:

u1:m—g T;, v = E ;.

il ie{1,2,... 011

So we can state

Theorem 4. Let m and n two positive integers, and
let C' be a depth—3 circuit with 2n input variables
z = (1, %2, ..., x2,) € {0, 1}?" and their negations on
the bottom, gates, which computes pc—simple functions
with parameter m on the first, unbounded fan—-in AND
gates on the second and a weighted threshold gate Y
with weights wy, ws, ..., w; on the top. Let M denote
the maximum fan—in of the AND gates on the second
level, and let

w = w(C’) = Z |1Uz|

If C' computes IP(z) for all x € {0,1}?", then

log(wM) = Q(n).



1.3 Comparison with previous work

Krause and Waack [KrW] proved that computing
ID(z,y) (the Boolean function which is 1 exactly if
& = y) on a circuit with a MOD m gate at the top and
symmetric gates at the bottom, needs exponential size.
However, ID(z,y) can easily be computed by a circuit
C of our Theorem 1: n MOD 2 gates at the bottom
and one AND gate at the second level suffices. On the
other hand, the TP(z) function, which is hard for our
circuit, is easy for the circuit of Krause and Waack: n
AND gates at the bottom and one MOD 2 gate at the
top can compute it. So the powers of our circuit and
the circuit of [KrW] are incomparable.

Our earlier result in [G] was a lower bound for
depth—3 circuits with a threshold gate at the top, ar-
bitrary symmetric gates at the middle, and MOD m
gates of bounded fan—in on the bottom, for some m.
The present lower bound of Theorem 1 does not need
the restriction on m and the bound on the fan—in, but,
on the second level, only AND gates are allowed. The
proof of the present result uses an elegant 2-player
probabilistic communication protocol, instead of the
intricate deterministic multi—party protocol of [G].

In addition, by our knowledge, the present result
is the first which gives a trade—off between the com-
putational resources in a circuit with hard—to—handle
MOD m gates.

2. COMMUNICATION COMPLEXITY

The notion of communication complerity was intro-
duced by Yao [Yal]. In this model two players, Al-
ice and Bob intend to compute the value of a Boolean
function f(z,y) : {0,1}" x {0,1}* — {0, 1}, where
Alice knows z € {0,1}", Bob knows y € {0,1}", and
both of them has unlimited computational power (e.g.
Alice would compute f(z,y) at once if she also knew
y). The players communicate through a 2-way channel,
and function f is computed, if one of them announces
the (correct) value of f(x,y). The cost of the compu-
tation is the number of bits communicated.

It is clear that every function can be computed
using n + 1 bits of communication: Alice sends her n
bits to Bob, then Bob computes f(z,y), and sends this
bit to Alice.

The protocol above is optimal if f = I.D(z,y), (c.f.

[Yal]).
However, if Alice and Bob are allowed to use proba-
bilistic bits (coin—flips) in their protocol, they can do
better: with communicating only O(logn) bits, they
can compute ID(z) with high probability, as it was
shown by several authors [Y4], [MS], [JPS], [Ra]:

(i) Alice chooses a random prime 0 < p < n?, and
transmits the (p, z mod p) pair to Bob.

(ii) Bob outputs “not equal” if & # y (mod p) and
“equal” otherwise.

The “not equal” answer is always correct. The “equal”
may be not. It is incorrect if and only if p divides
z —y # 0. A rough estimation of the probability of
this event: |z —y| < 2", so ¢ — y has at most n dif-
ferent prime divisors. By the Great Prime Number
Theorem, there are Q(n?/logn) primes p under n? for
Alice to choose from, so the probability that it happens

to divide z — y is
O(logn).

n

A version of this random protocol will play a key role
in the proof of Theorem 1.

3. PROOF OF THEOREM 1

First we prove (Lemma 5) that a depth-2 sub-
circuit C; of C correctly computes IP(z) on a “big
enough” portion of all inputs. After that we show
a probabilistic 2-player protocol in our Main Lemma
(Lemma 8) which computes the outcome of circuit
C; with high probability. The proof then concludes
with the application of a lower bound result of Chor
and Goldreich [CG] (Theorem 9) which yields a lower
bound to the probabilistic communication complexity
of protocols, computing the outcome of C; on a “big
enough” portion of all inputs.

Lemma 5. Let C1,Cy,...,C: denote the depth—-2 sub-
circuits of C, each with an AND gate at the top, and
unbounded—fan—-in MOD m gates at the bottom. Let
Pr denote the probability measure associated with the

uniform distribution on {0, 1}?". Then there exists an
i (1 <i<t)such that either

1 1 1

2 3w

or

1 1 1
3 + 30 3EE < Pr(NOT(Cj(z)) = TP(z)).

Proof. We need the following result of [HMPST]:

Lemma 6. ([HMPST], Lemma 3.3)

Let C' be a circuit with 2n inputs, with a threshold
gate T' with weights wy,ws, ..., w; at the top, w =
25:1 |w;|, and suppose that the in—coming wires of
gate T' are connected to subcircuits Cy,Cly, ..., Cy. Let
A, B C {0,1}?" be disjoint sets, such that circuit C



accepts the elements of A and rejects those in B. Let
Pr, (respectively, Prg) denote the uniform probability
distribution on A (respectively, on B). Then

1
max [Pra(Cifz) = 1) = Pra(Ci(e) = D] 2 .

Proof. See [HMPST]. |}

Let us apply Lemma 6 to the circuit C' of the statement
of Lemma5. With A =IP~1(1), B=1P~1(0), w=
w(C) we get that 37 : 1 <i <t

(1) [Pra(Ci(z) =1) = Prp(Ci(z) = 1)| >

We also need:

Lemma 7.

1
[Pr(4) = Pr(B)| < 575

Proof. See [HMPST] Lemma 3.4. or [CG]. |}
Since Pr(A) 4+ Pr(B) = 1, Lemma 7 implies:

1 1 1 1
@) 3 gzm P S5t oes

1 1 1 1
(3) 9 7 9%+l < PT(B) < B + 9E+1

It is easy to see that
Pra(Ci(z) = 1) = Pr(Ci(z) = 1]z € A),
and
Prp(Ci(z) = 1) = Pr(Ci(z) = 1|z € B),
where Pr(X|Y') denotes the conditional probability:

Pr(X ANDY)

PrXIY) = =5

So, from (1):

Pr(Ci(z) = 1|z € A) — Pr(C;(z) = 1]z € B)| >

= |-

From now on, as a shorthand, we write A instead of
z € A and B instead of z € B.

So

Pr(Ci(z) =1,4) _Pr(Ci(z)=1,B)| _ 1
Pr(A) B Pr(B) ~w

thus

Pr(Ci(x) = 1, A) — E:Eg; Pr(Ci(z) = 1, B)| >

> Pri)A) > 3%

for large enough n, using inequality (2).

By the triangle-inequality:

1 B Pr(A) oy
T < |Pr(Ci(z) =1, A) — Pr(B) Pr(Ci(z) =1,B)| <
< |Pr(C;(z) =1,A) — Pr(Ci(z) = 1, B) |+
Pr(A) R
+ ‘1 = Bem) [PrCi) =1, B) <
< IPr(Ch(z) = 1,4) = Pr(Ci{z) = 1, B)| + 55—
using Lemma 7 and (3).
Consequently
1 1

— — —— < |Pr(Ci(z) = 1, A) — Pr(C;(z) =1, B)|.

3w 2272~
Let us assume now that

Pr(Ci(z) =1, A) > Pr(C;i(x) = 1, B).

So
1 1
3w 2272~
<Pr(Ci(z) =1,A) — Pr(Ci(x) = 1, B),
and, since

Pr(B) = Pr(C;(z) = 1, B) + Pr(C;i(x) = 0, B),

1 1

3w 232 =

<Pr(Cj(z) =1, A) + Pr(Ci(z) =0, B) — Pr(B).

From here, using the lower bound in inequality (3):

(@) 5+ 50— 5o < PrCi(e) = TP(2)),

because
Pr(Ci(z) = IP(z)) =Pr(Ci(z) = 1, A)+
+Pr(Ci(z) =0, B).

Similarly, if Pr(C;(z) = 1,4) < Pr(Ci(z) = 1,B)
holds, then — exchanging the roles of A and B — we
shall get:

1 1 1
() 5+ 3, ~ 3778 < Pr(NOT(Gi(2)) = IP(2)),

and this completes the proof of Lemma 5. ||



Lemma 8. Let g(z) = g(x1,22,...,x2,) : {0,1}** —
{0, 1} such that g(z) is computed by a depth-2 circuit
C, with an AND gate at the top and N MOD,, gates
at the bottom. Let I C {1,2,...,2n}, and suppose that
Alice knows the values of the variablesU = {z; : i € I},
and Bob knows the values of the variables V = {z; :
JE{1,2,...,2n} — I}. Let o > 2. Then there exists a

probabilistic protocol which communicates
alog N +loglogm + O(1)

bits, and for each = € {0,1}?", it computes g(z) with
success probability at least

] alog N + loglogm

No—1 '
Proof. One can suppose that both Alice and Bob
know the circuit €'y and index-set I. First, they pre-
pare a matrix 7" with 2 columns and N rows in the
following way:
Row ¢ of T is corresponded to a MOD,, gate G, of
circuit C1:
— The first entry in row £ is the mod m sum of those
inputs of gate Gy, which are also elements of set U (i.e.
known for Alice);
— the second entry in row £ is the mod m sum of those
inputs of gate Gy, which are also elements of set V' (i.e.
known for Bob),
for £=1,2,...,N. (If Z; is an input to Gy, then 1 — z;
is added up mod m.)

Let us observe that G, outputs 1 if and only if the mod
m sum of row £ of 7" is 0. Circuit Cy outputs 1, if and
only if the mod m sum of each row of T is (.

Since the first column of T" consists of sums of variables
from U, this column is known for Alice. Similarly, the
second column of 7" is known for Bob.

Alice knows the first column of 7', and that the circuit
outputs 1 if and only if every row has a mod m sum
0. Consequently, Alice knows that the only case when
the circuit outputs 1 is when the second column of T
is

tl = (t1127tl22) "')ﬁ’\’?)

where t{, = m — t;; mod m, where #;; is the ith entry
in the first column of 7,2 =1,2,..., N.

t’ can be thought of as an m-ary representation of an
integer 0 <# <m" — 1.
Now we can use a version of the randomized protocol
described in Section 1.2:

(1) Alice chooses a random prime p:

2<p< N%logm

and transmits the (p,#' mod p) pair to Bob with
O(alog N + loglog m) bits of communication.

(ii) Bob outputs “Yes” if the second column of T, in-
terpreted as an m-—ary number, ¢, is congruent to
t' mod p, and “No” otherwise.

Again, the “No” answer is always correct. The “Yes”
answer 1s incorrect exactly when p is a divisor of 0 <
[t —#| < m"™ — 1. By a rough estimation, t — #' has at
most N log m different prime—divisors, but Alice have

had
N%logm

alog N + loglog m
possibilities to choose from (using the Great Prime

Number Theorem), so the failure probability is at most:

alog N + loglogm
Na-1 '

Now we are ready to prove Theorem 1.

Suppose that circuit C' computes [P(x). For i =

1,2,...,N, let D; be defined as
D; = {x €{0,1}*: Ci(z) = IP(z)}.

By Lemma 5, there exists an ¢ such that

. L <Py
2 3w 253 =\
o 1 1
— 4 — — —— < Pr({0,1}*" — D).
2 " 3w gFms S P01 )

Without restricting the generality we assume that the
first inequality holds. Let D = D;. Let g(z) be the
function, computed by circuit C;. Then

(6) VYVeeD: g(z)=1IP(z).

By Lemma 8, there exists a probabilistic protocol,
which computes g(x), and its success probability is at
least

alog N + loglog m alog N + 0O(1)

(1) 1- a1 =l —

independently from z.

Because of (6), if Alice and Bob computes g(z) with
O(alogn+O(1)) communication (with a constant m),
then they will get the value of 7P(z) with probability
(7),ifzeD.

In other words, if Alice and Bob computes g(z) by the
protocol of Lemma 8§, then they will get P(z) with
average success probability



alog N + O(1
®) pr(p) (1 - 22X L OUY,

where the “average” is computed over all z € {0,1}%".

We can apply here a lower bound result of Chor and
Goldreich [CG]:

Theorem 9. [CG]Suppose that probabilistic protocol
P, computing I P(z), has an average success probabil-
ity at least

1
54—6 forsomee>ﬁ,

and the protocol communicates — for fixed ¢ and for
fixed n — always . (n) bits. Then

1
Ye(n) > n—3—3logg.

Case 1. If N < min(12w, 2% ~?), then we can give the
following lower estimation for (8):

assuming, that N2 < 2573 and a > 3.
Let us set « such that

(10) 6w = %NO“Z,

where we use the obvious facts that N > 2 and w > 1.
If, with this a, N®=? < 25~3 does not hold, then we
have got a proper lower bound to w, and we are ready.
Otherwise, we can use (9) and Theorem 9, with ¢ =
JN -2,

(11) Ye(n) >n—3(a—2)log N — O(1).

Because of (10), and since a > 3, the protocol of
Lemma 8 communicates at most

< “ 2) logw + O(1) < 3logw + O(1)
o —

bits, so (11) can be written:

(12) 6logw > n —0O(1).

Case 2. If 12w < min(N,2%73), then the lower esti-
mation for (8) is:

(5% 30 g5m) (1= i) 2
1

6w’

+

©

N | —

>

Let
6w = NQ_Q,

where 2 < a < 3. Now, the protocol of Lemma 8 has
communication of at most 3log N 4+ O(1) bits, so, from
Theorem 9:

(13) 6logN > n— O(1).
Now, unifying (12) and (13):
log(Nw) > max(log N, log w) >

which completes the proof. |

4. PROOF OF THEOREM 4.

(Sketch) The proof is the same as that of Theorem 1,
except Lemma 8 should be stated for a depth—2 circuit
C1 with an AND gate at the top and gates, computing
pc—simple functions with parameter m, at the bottom.
The probabilistic protocol of Lemma 8 can also be mod-
ified to this class of circuits with the same result. The
further details are omitted here. W
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