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Abstract. The examination of straightforwardly definable discrete
structures in nucleic acids and proteins turned out to be perhaps the
most important development in our present knowledge and understand-
ing the their form and function. These discrete structures are sequences
of nucleotides and amino acid residues, respectively. Bioinformatics was
born as the science of analyzing these sequences. The discretization of
the biological information into easy-to-handle sequences of 4 or 20 sym-
bols made possible the application of deep mathematical, combinatorial
and statistical tools with enormous success. The tools, resulting from
this process, changed our perception of genetics, molecular biology, and
life itself.

Straightforward discrete structures can also be defined in the spatial
descriptions of proteins and nucleic acids. The definition and examina-
tion of discrete objects, using the spatial structure of proteins instead
of amino acid sequences would intercept spatial characteristics, that are
more conservative evolutionary than the polypeptide sequences.

In the present work we analyze the Delaunay tessellations of more than
5700 protein structures from the Protein Data Bank. The Delaunay tes-
sellations of the heavy atoms of these protein structures give certainly
a more complex structure than the polymer sequences themselves, but
these tessellations are still easily manageable mathematically and statis-
tically, and they also well describe the topological simplicial complex of
the protein.

Our main result is Table 1, describing the relation between van der Waals
and covalent bonds in the edges of the Delaunay tessellation. Among
other findings, we show that there is only a single one Delaunay tetrahe-
dron in the analyzed 5757 PDB entries with more than 81 million tetra-
hedra, where all six edges of the tetrahedron correspond to atom-pairs
in van der Waals distance, but none of them to atom-pairs in covalent
distance.



1 Introduction

Recognizing the importance and decoding the rich information of polypeptide
sequences of proteins and nucleotide sequences of nucleic acids were the bases of
the exponential growth of the biological knowledge in the 20th century.

Beside these sequential information, numerous other discretized or discretize-
able biological data sources wait to be exploited. One of these is the large, rich
and reliable Protein Data Bank [1], storing the mainly crystallographical infor-
mation of more than 50,000 entries (proteins and nucleic acids) today.

In our earlier work [2] we defined a certain simplicial decomposition on the
heavy atoms of the protein structures in the PDB, and analyzed geometrical
properties of the tetrahedra of different atomic composition.

1.1 Delaunay-Decompositions

Definition 1. Given a finite set of points A ⊆ R3, and a H ⊆ A such that the
points of H are on the surface of a sphere and the sphere does not contain any
further points of A, then the convex hull of H is called a Delaunay region.

Theorem 1. Delaunay regions define a partition of the convex hull of A. If the
points of A are in general position, (i.e., no five of the points are on the surface
of a sphere), then all regions are tetrahedra (cf. Figure 1).

ut

We are interested in the Delaunay tessellation of the point-sets, since it is
well-defined, it can be computed easily [3], and the resulting tetrahedra are as
close to the regular tetrahedra as possible, in the sense that circumspheres do
not contain further points from the point-set.

Figure 1 shows an example for the Delaunay tessellation on the plane.
Singh, Tropsha and Vaisman [4] applied Delaunay decomposition to protein-

structures as follows: they selected A to be the set of Cα atoms of the protein, and
analyzed the relationship between Delaunay regions volume and “tetrahedrality”
and amino acid order in order to predict secondary protein structure. They gave
the following definition:

Definition 2 ([4]). The tetrahedrality of the tetrahedron with edge-lengths
l1, l2, l3, l4, l5, l6 is defined
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where li is the length of the ith edge.

In a more recent work, Masso, Hijazi, Parvez and Vaisman [5] applied De-
launay tessellation combined with AI tools to predict residue-structure compat-
ibility in case of point mutations of the E. coli lac repressor.

In an earlier work of us [2], we computed the Delaunay tessellations of all the
heavy atoms of more than 5700 ”perfect” PDB entries from the Protein Data



Fig. 1. The Delaunay decomposition of 5 points on the plane. Note the empty
circumcircles. The figure was created by using a Java applet, available at
http://www.cs.cornell.edu/home/chew/Delaunay.html

Bank, where ”perfect” means that they contain no missing atoms in their spatial
coordinate section (c.f. Figures 2 and 3 for illustrations.) Next, we examined the
protein-ligand complexes by reviewing all ligand atoms in protein-ligand com-
plexes, and characterizing the protein-atoms in the four vertices of the tetrahedra
containing the ligand-atoms ([2], Tables 2 and 3). We found intricate geometri-
cal relations in the distribution of tetrahedral vertices. We also found different
volume-tetrahedrality characteristics of tetrahedra with different atomic vertex-
sets ([2], Figure 3).

2 Materials and methods

In what follows A ⊆ R3 is always a subset of the heavy atoms (i.e., non-hydrogen
atoms) of a protein.

To find the Delaunay decomposition of a set, we have used the algorithm
qhull. Its implementation source is available at: http://www.qhull.org/ [3].

For visualizing the Delaunay tessellations of protein structures, we applied
the PyMol software together with the publicly available PyDet plug-in [6].

In an earlier work of us, we applied a rigorous cleaning and re-structuring
procedure for the entries in the Protein Data Bank [7], and created the RS-PDB
database. We made use of non-trivial mathematical, mainly graph-algorithms:
Computing the InChITM code [8, 9] applied a graph-isomorphism testing,



Fig. 2. A Delaunay-tetrahedron in a spatial atom set.

Fig. 3. The Delaunay decomposition of the PDB entry 1n9c.

transforming aromatic notation to Kekule-notation used a non-bipartite graph-
matching algorithm [10], breadth-first-search graph traversals [11] were used
throughout the work [7], depth-first search [11] was used in building the ligand
molecules and identifying ring structures, kd-trees [12] were applied for com-



puting covalent bonds, and hashing [11] were utilized for the fast generation of
protein-sequence ID’s.

We applied the qhull algorithm for those PDB [1] entries, that contained

– at least one protein molecule,
– with no missing atoms,
– the resolution of the structure is at least 2.2 Å.

We have found 5757 such entries in the RS-PDB database. Note, that the
requirement for the missing atoms is perhaps too strict, but in this study we do
not intend to deal with stability questions, i.e., the effects of the missing atoms
for the whole tessellation.

In contrast with the article [4], we have taken A to be the set of heavy atoms
of the protein, in the recent work as well as the in the [2]. Note that in that
case we can not suppose that points are in general position, as for example in a
(perfect) benzene ring at least 6 carbon atoms lie on a sphere. However, we have
found that - probably due to imprecision of data in the PDB, all regions turn
out to be tetrahedra.

Our present work also use this set of filtered data for characterizing the bond
graphs in spatial protein structures.

3 Results: Van der Waals edges vs. covalent edges in

Delaunay tetrahedra

We suggest that the Delaunay tessellation could be a discrete structure catching
some deep properties of the 3D protein data. In [2], we analyzed protein-ligand
complexes with the help of Delaunay tessellations.

Here we characterize the edges of Delaunay tetrahedra into three classes:

i Edges, longer than the van der Waals bond distance of the two atoms in the
vertices;

ii Edges, shorter than or equal to the van der Waals bond distance of the two
atoms in the vertices;

iii Edges, shorter than or equal to the covalent bond distance of the two atoms
in the vertices.

Clearly, type (iii) edges are also type (ii) edges, but the reverse is not true.
Heuristically, the Delaunay tetrahedra will contain lots of atom pairs in bond

distance. Our main result in the present work is Table 1.
The columns of Table 1 correspond to the graphs, with vertices correspond to

the vertices of the Delaunay tetrahedra, and edges of type (ii). The rows of Table
1 correspond to the same 4-vertex graphs in the same order as in the columns,
but his time with type (iii) (i.e., covalent) edges. The very first row and the last
column describes the degrees of the vertices in the 4-vertex graphs.

For example, on Table 1, in the intersection of column 1111 and row 0011, the
number 126,110 means that from the more, than 5 million tetrahedra with two



Table 1. The columns correspond to the Delaunay tetrahedra where the connected
vertices are in van der Waals distance, while the non-connected ones are longer than
the atom-specific van der Waals distance. The rows correspond to the same graphs in
the same order, but there the edges correspond to vertices in covalent distance, and
the non-edges vertex-pairs in non-covalent distance. The first row and the last column
contains the degree sequences of the bond-edges in the tetrahedra. The item in the
intersection of a row and in a column contains the number of tetrahedra satisfying the
definition both of its row and its column. Since van der Waals distances are larger than
covalent distances, the lower left half of the table is empty.

van der Waals edges with degree-sequence 1111, only 126,110 contain exactly
one covalent edge.

It is worth to mention, that while there are - albeit very few - length-3 and
length-4 cycles in the van der Waals graphs, there is no a single one in the
covalent graphs (c.f., the highlighting in Table 2), this observation correlates
well with facts from basic biochemistry.

Rows with degree-sequences 1113 and 1122 show that tetrahedra with at
least 3 covalent bond edges do not admit further van der Waals edges.

Row with degree sequence 0112 shows that its intersection with column 0222
is 0, that is, a length-2 path of covalent edges prohibits a third van der Waals
edge closing the path to a triangle.

On the other hand, the shaded part of Table 3 shows that almost all complete
4-vertex van der Waals graph has two non-adjacent covalent edges. There is only
a single complete 4-vertex van der Waals graph without covalent bonds, depicted
on Figure 4.



Table 2. The highlights show that there are no 3- or 4-cycles in the covalent graph (it
is not surprising), but there are numerous such cycles in the van der Waals graph.

Fig. 4. The single complete 4-vertex van der Waals graph without covalent bonds in
PDB entry 1qiz. The vertices are carbon atoms, each from different polypeptide chains;
more exactly, the van der Waals tetrahedron is formed from the Cδ2 atom of the LEU13

of chain E, the Cδ2 atom of the LEU13 of chain K, the Cδ2 of the LEU17 of chain L,
and Cγ2 atom of the VAL18 of chain F.



Table 3. The highlighted column shows that almost all complete 4-vertex van der
Waals graph has two non-adjacent covalent edges. There is only a single complete
4-vertex van der Waals graph without covalent bonds.

This single exception can be found in an interesting configuration in the PDB
entry 1qiz, in a human insulin hexamer structure. As we depicted on Figure 4, the
four vertices of the tetrahedron consists of four carbon atoms, each in different
polypeptide chains. More exactly, from the Cδ2 atom of the LEU13 of chain E,
the Cδ2 atom of the LEU13 of chain K, the Cδ2 of the LEU17 of chain L, and
Cγ2 atom of the VAL18 of chain F.

In [2], we examined the relation between the tetrahedrality and the volume
of the tetrahedra in the Delaunay tessellations of the protein structures. We give
here the triple logarithmic plot of the complete data set in Figure 5.

We have found that the volume-tetrahedrality relation is strongly dependent
on the bond-graph of the Delaunay tetrahedra examined. Figure 6 gives the
highly different triple-logarithmic color-coded plots, that is a decomposition of
Figure 5, according to bond-graphs.
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[2] Ördög, R., Szabadka, Z., Grolmusz, V.: Analyzing the simplicial decomposition
of spatial protein structures. BMC Bioinformatics 9(S11) (2008)

[3] Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software 22(4) (1996) 469–483

[4] Singh, R.K., Tropsha, A., Vaisman, I.I.: Delaunay tessellation of proteins: Four
body nearest-neighbor propensities of amino acid residues. Journal of Computa-
tional Biology 3(2) (1996) 213–222

[5] Masso, M., Hijazi, K., Parvez, N., Vaisman, I.I.: Computational mutagenesis
of E. coli lac repressor: Insight into structure-function relationships and accurate



Fig. 6. Decomposition of Figure 5 by the covalent bond-graphs. The color codes and
axes labels are the same as in Figure 4.
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