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Abstract
The Protein Data Bank (PDB) contains the description of approximately 27,000

protein-ligand binding sites. Most of the ligands at these sites are biologically ac-
tive small molecules, affecting the biological function of the protein. Classifying
their binding sites may lead to relevant results in drug discovery and design.

Clusters of similar binding sites are created here by a hybrid, sequence and
spatial-structure based approach, using the OPTICS clustering algorithm. We de-
fined a dissimilarity-measure: a distance-function on the amino acid sequences of
the binding sites. We clustered all the binding sites in PDB according to this dis-
tance function, and found that the clusters well characterize the EC codes of those
entries that have one.

The color-coded results, containing 20,967 binding sites clustered, are avail-
able as html files in three parts at http://pitgroup.org/seqclust/.

1 Introduction
In the past few years exploration of the human genome gained the widest publicity.
Although somewhat less emphasized, another plenteous bioinformatical resource is
the exponentially growing, publicly available Protein Data Bank (PDB) [1], containing
more than 55,000 biological structures today.

Three-dimensional structure of smaller molecules – e.g., drug molecules – can usu-
ally be calculated from their chemical composition. Several databases exist that contain
millions of ligands - an example of this is the freely available ZINC database ([2]) cre-
ated from catalogues of compound manufacturers.

Contrary to ligands, three dimensional structure of proteins cannot easily be calcu-
lated, so the rapid growth of the PDB cannot be overestimated.

Most of the antimicrobial drug molecules act as enzyme inhibitors. Inhibitors need
to bind stronger to the enzyme than the substrate of the enzyme; consequently, the
chemical and geometrical properties of the binding sites are of utmost importance in
drug search and design.
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1.1 Our goals
The PDB contains the three-dimensional structures of more than 55,000 entries. In a
separate work ([3]), we collected, verified and cleaned the list of approximately 27,000
binding sites, found in the PDB. In the process of identifying these binding sites, we
filtered out crystallization artifacts, covalently-bound small molecules, and also took
into account broken peptide-chains, modified amino acids, incorrectly labeled HET
groups. The resulting cleaned, strictly structured RS-PDB database ([3]) can serve as
an input for different data mining algorithms. One such technique of classification is
clustering. By clustering of binding sites it is possible to create binding site similarity
classes. These classes can be useful for classifying protein-ligand interaction.

In this paper we present a fast, sequence-based method for binding site clustering
that takes into account amino acid sequences in the close neighborhood of binding sites.
Our method is a hybrid in the sense that it uses the sequence information together with
the steric data from the PDB in a clearly structured way.

1.2 Previous work
There is a very rich literature describing identification techniques for biological func-
tions from structural protein information by applying highly non-trivial mathematical
tools [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
Some of these tools were applied for finding or analysing protein-protein interaction
network topology [23, 26, 27, 28, 29, 30, 31] or binding sites [23, 32, 33]. A con-
siderable amount of work was also done for devising polypeptide sequence-order in-
dependent structural properties [34, 35, 6, 36, 37, 14, 15, 17, 17, 38]. Unlike other
binding site clustering solutions in the literature ([39, 40, 41, 42]), we use a hybrid of
order-independent and an order-analyzing methods; one of its main features is that it is
capable of handling multiple polypeptide chains in the same binding site.

2 Methods

2.1 Binding Site Representation
As a first step, an exact definition of a binding site has to be provided. For easy al-
gorithmic handling we store the binding sites found in the PDB in a compact data
structure.

The Definition of Binding Sites

A binding sites is defined as a set of atom-pairs; the first atom of the pair belongs to
the protein, and the second atom to the bound ligand, such that their distance is equal
to the sum of Van der Waals radii, calculated differently for different atom-types. That
is, only the pairs within non-covalent binding distance are included in the list. Binding
sites, containing covalently bound ligands, are not considered in this work, since the
main motivation of ours is to review pharmacologically significant binding sites.
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A binding amino acid (or residue) is an amino acid with at least one of its atoms
in binding atom-pair. A binding amino acid sequence is an amino acid sequence that
contains at least one binding amino acid. Basically, binding sites are represented by
storing all the binding amino acid sequences of all the protein chains that are present
at the particular binding site.

Binding sites were extracted from the RS-PDB database described in ([43] and
[3]). By using this definition for binding sites, all amino acids from a given amino acid
sequence that have at least one atom contained in an atom pair-set (describing some
binding site) can be identified.

Residue Sequence Representation

On amino acid sequence we mean sequences consisting of amino acids connected by
peptide bonds that are of maximal length (i.e., they cannot be continued with further
amino acids on either end).

We note that multiple amino acid sequences might occur in the immediate vicinity
of a single binding site, which makes binding site distance/similarity determination
fairly complicated. An example of a binding site with four neighboring polypeptide
chains can be seen on Figure 1.

Figure 1: A binding site with four protein chains (PDBID: 1CT8). Each chain is col-
ored diferently.

Binding amino acid sequences were first extracted from the binding sites of the
RS-PDB database [43], [3] then they were simplified as follows:

A string was assigned to each amino acid sequence in a binding site. In this string,
residues participating in the bond were indicated by their one-character code; non-
binding amino acids were indicated by ’-’ characters. As our purpose was to deal
with only the binding sections, the pre- and postfixes consisting of purely non-binding
amino acids (or, in our notation, ’-’ characters), were deleted. Hence all the strings
constructed this way start and end with a binding amino acid.
Example. A binding amino acid sequence constructed and transformed the way de-
scribed above (from PDB entry 2BZ6) is shown below:
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H −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−TT −−D −−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−P −−−−−−−−−−−−−−−
−DSCK −−S −−−−−−−−−−−−−−−−−V SWGQGC −−−−−−G

2.2 Distance Function
For using a clustering algorithm, we need to define a distance function. The binding
sites are represented by all amino acid sequences that participate in the bond with the
ligand. Consequently, one have to define the distance of the sequence-sets, situated in
the binding sites. This is accomplished first by defining the distance of two sequences
(described in section 2.1), then by defining the distance of sequence-sets. The reason
for this complexity is the fact that more than one binding sequence can be present in a
binding site (cf., Figure 1).

Sequence Comparison Algorithm

For measuring the distances of binding sections of amino acid sequences constructed
the way described above, we used a modified version of the algorithm used for cal-
culating Levenshtein-distance (furthermore denoted as L). The modifications involved
assigning different costs to gaps depending on where they are inserted, while amino
acid mismatches were simply penalized by the value 1.

The costs of aligned binding and non-binding amino acids were the following:

• The cost of two aligned, different amino acids is 1.

• The cost of aligned, matching amino acids is zero.

Gaps were penalized as follows:

• Insertion of a gap with a length of one unit (one amino acid) costs gp (gap
penalty), if the gap is aligned with a non-binding amino acid in the other se-
quence. If a gap is aligned with a binding amino acid, its cost is 1.

• Insertion of gaps at the end of sequences is only penalized if they are aligned
with binding amino acids. Gaps inserted at either end of a sequence have a zero
cost, if they are aligned with non-binding amino acids.

It can be shown that the Levenshtein-distance (and also our modified version of it)
fulfills the required properties for being a metric. Non-negativity and symmetry can be
directly seen from the definition (assuming non-negative costs). It is also obvious that a
zero distance can only be achieved by comparing the same objects: L(x, y) = 0 ⇐⇒
x = y (assuming that every compared sequence starts and ends with a binding amino
acid). What is left to prove is the triangle inequality: for every s, t, r strings (binding
amino acid sequences),

L(s, t) ≤ L(s, r) + L(r, t)
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In other words, the triangle inequality asserts that changing s to t ”via” r cannot
cost less than changing s into t directly. As the Levenshtein-distance (by definition) is
the minimum possible total cost of operations transforming s into t, and the sequence
of operations that transform s into r, and then r into t is also an allowed sequence of
operations, it cannot have a lower total cost than L(s, t), as this would contradict to the
optimality of L(s, t). (What we may want to prove at this point is that the algorithm
we use indeed calculates the defined distance – L.) This reasoning is also applicable
to our modified version of the Levenshtein-distance; the only difference is that we
have a somewhat more sophisticated set of costs for inserting, deleting and changing
characters. We assume that the costs are non-negative, and any binding amino acid
sequence compared with our distance function starts and ends with a binding amino
acid. We can now reformulate the above defined costs to be used with ”insert”, ”delete”,
”change” operations.

Costs for insertion:

• Inserting a ’-’ character to the end of the sequence: 0.

• Inserting a ’-’ character between the first and last binding amino acid of the
sequence: GP .

• Inserting the one-letter code of a binding amino acid: 1.

Costs for deletion:

• Deleting a ’-’ character from the end of the sequence: 0.

• Deleting a ’-’ character between the first and last unchanged binding amino acid
of the sequence: GP .

• Deleting the one-letter code of a binding amino acid: 1.

Costs for character changing:

• For matching characters, 0.

• For non-matching characters, 1.

If we want to transform a binding amino acid sequence s into t using the above
operations, we cannot expect to get a lower total cost by first transforming s to an
arbitrary r and then r to t (compared to directly transforming s to t). This means that
the triangle inequality holds.

Binding Site Comparison Method

The input of the distance function described above are two strings that represent amino
acid sequences extracted from binding sites. However, our aim is to measure the dis-
tance of binding sites, not just single amino acid sequences. We have seen in Section
2.1 on Figure 1 that multiple amino acid sequences might occur in the immediate vicin-
ity of a binding site. Therefore, we also have to define the distance of sequence-sets,
representing binding sites.
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For this purpose, a complete bipartite graph is defined: This is a graph where the
set of vertices can be divided into two disjoint sets A and B such that no edge has both
of its endpoints in the same set, while |A| = |B| and the number of edges is always
|A| · |B|.

• Points of the vertex sets A and B correspond to the amino acid sequences of the
first and the second binding sites, respectively. If the numbers of the amino acid
sequences are not equal in the two binding sites, amino acid sequences with zero
length are added to the smaller set.

• Weights are assigned to all edges of this graph that correspond to the distance
of the two amino acid sequences the edge connects. On distance we mean the
distance defined in Section 2.2.

The distance of the sequence sets A and B is then defined as the minimum weight
perfect matching ([44]) in the graph defined above.

We note that by the definition of Section 2.2, the distance of an arbitrary residue-
sequence A to a zero-length sequence B is the binding amino acid count of sequence
A.

Binding Site Distance Normalization

The expected distance of two randomly generated binding sites will be proportional to
the sum of binding amino acids occurring at the binding sites. The maximum achiev-
able distance is always less than the sum of binding amino acids.

The distance of two binding sites calculated using the function described in Section
2.2 does not describe binding site dissimilarity alone. If the distance of two binding
sites is 3, it may occur that they have 3 binding amino acids each, hence they can be
completely different. On the other hand, a distance of 3 between two binding sites with
30 binding residues each is approximately a ten percent difference, so these binding
sites might be almost the same.

Therefore, it is necessary to ,,normalize” the distances – we did this by dividing all
distances by the sum of binding amino acids of the two binding sites in comparison.
The result of this operation yields a value between 0 and 1 that can also be interpreted
as a percentage of the absolute maximum possible distance of the two binding sites.

2.3 Clustering Algorithm
For data clustering we intended to use an algorithm that is not biased towards even
sized and regular shaped clusters.

One algorithm with this properties is DBSCAN ([45]), which is a density-based
algorithm. The density of objects is defined with a radius-like ε parameter and an
object-count lower limit (minpts): a neighborhood of some object o is considered
dense if there exist at least minpts objects within a less-than-ε distance. So, minpts

and ε are input parameters of the algorithm.
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Unfortunately, the clustering structure of many real-data sets cannot be character-
ized by global density parameters, as quite different local densities may exist in differ-
ent areas of the data space. The OPTICS (Ordering Points To Identify the Clustering
Structure) ([46]) algorithm overcomes these difficulties by ordering the objects con-
tained in the database, creating the so-called reachability plot. The reachability plot
is a very clever visualization of high-dimensional clusters. It is basically generated by
assigning a value called reachability distance to all the objects of the database, while
going through the database points in a specific order. The reachability distance is given
on the y axes, while the objects (i.e., binding site-representations) are numbered on
axes x. Clusters are corresponded to concave regions on the plot. After the creation
of the reachability plot, cluster membership assignments can be – among others – cre-
ated by cutting the reachability plot with a horizontal line furthermore referred to as
cut-level.

The reachability plot of a small database consisting of binding sites that contain
NAD as the ligand can be seen on Figure 2.

Figure 2: OPTICS reachability plot of a database consisting of 800 binding sites

2.4 Clustering Quality Measurement
Quality of a given clustering depends on several parameters. These include parame-
ters of the distance function used for determining similarity or distance of objects and
parameters of the clustering algorithm. In order to get appropriate feedback about the
quality of a clustering with a given parameter setting, a quality metrics has to be de-
fined. For this purpose we used the silhouette coefficient ([47]). The advantage of the
silhouette coefficient is that it is completely independent from the type of data being
clustered; upon its determination it only uses object distances and cluster membership
assignments.
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silhouette coefficient Clustering quality
0.00-0.25 Clusters cannot be adequately identified,

cluster borders are not obvious
0.25-0.50 Clusters can be identified, but there exist

a lot of unclassifiable points (noise)
0.50-0.70 Most of the data/points can be classified
0.70-1.00 Excellent distinguishable clusters

Table 1: Cluster quality descriptions based on silhouette coefficient’s values by ([47])

Data contained in Table 1 is based on empirical measurements – silhouette coeffi-
cient values depend greatly on the applied distance function. Therefore, it is question-
able to classify clusterings into rigid quality categories based on the silhouette coeffi-
cient value. However, it is undoubtedly useful for comparing quality of clusterings.

Silhouette coefficient requires the clustering algorithm to assign each binding site
to a cluster by definition. Thus, the silhouette coefficient value also shows the amount
of noise the database contains. The OPTICS algorithm, however, also allows marking
some binding sites as ”noise” (thus not putting them into any cluster). It does not
seem to be reasonable for binding sites that are ”noise” to be taken into account twice
(once, as the OPTICS algorithm marks them, and once at the calculation of silhouette
coefficient). Therefore, binding sites marked as noise were not taken into account when
calculating silhouette coefficient. Nevertheless, for the sake of completeness, we will
show (Figure 5) how the value of silhouette coefficient would change if binding sites
marked as noise would be taken into consideration with a silhouette=0 value.

2.5 Database parameters and further settings used in OPTICS al-
gorithm

The OPTICS algorithm was run on a database consisting of 20,967 binding sites. Indis-
tinguishable binding sites – that were assigned exactly to the same binding amino acid
sequence-sets and ligand identifiers – were contained only once. (The original database
– without this kind of redundancy filtering – consisted of 27208 binding sites.) Dis-
tance of binding sites was measured with the function described in Section 2.2, using
costs introduced in Section 2.2.

3 Results
Our main result is the OPTICS-based clustering of the 20,967 binding sites found. In
order to verify the capabilities of the clustering method we need to compare the clusters
found with verified biological functions.

3.1 Verification of Results: Biological Relevance
Optimally, in the same cluster proteins of same or closely related functions ought to
be assigned. We considered the EC classification of the enzymes, and color-coded
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the EC numbers in the way that closely related functions got close colors, as given in
http://pitgroup.org/seqclust/bsites AAcodes/EC colour.html.

The color-coded clusters, together with the ordinal number of the binding site, the
PDB ID, the cluster ID and the EC number can be found in three large html files,
(Page1, Page2, Page3 ) under http://pitgroup.org/seqclust/. The clusters correspond to
concave regions in the figure.

The deviations of the EC numbers in all the clusters were also computed, and are
given in the on-line table http://pitgroup.org/seqclust/bsites AAcodes/EC deviation.txt.

We believe that the validation of enzymatic functions through EC numbers shows
that the clustering method of ours is an adequate solution for binding-site clustering
and classification.

Parameter settings and examples

The parameters used for clustering were the following:

Parameter Value
OPTICS minpts 2
OPTICS cut-level 20%
Gap penalty (gp) 1

10

We present here as examples four binding sites from the biggest cluster (element
count: 448) – see Figure 3. All four proteins are blood clotting factors. The whole clus-
ter is given in the on-line Figure http://pitgroup.org/seqclust/bsites AAcodes/bsites optics M02 No001.html.
Note that the whole cluster is colored to blue there, and all the members of the cluster
(between line numbers 702 and 1149, cluster ID: 28) have EC numbers of the form
3.4.21.X (serine proteases).

From the second biggest cluster (element count: 188) three binding sites were visu-
alized on Figure 4. The whole cluster is given in the on-line Figure http://pitgroup.org/se-
qclust/bsites optics M02 No001.html. Note that the whole cluster is colored to deep
violet, and almost all the members of the cluster (between line numbers 1224 and 1411)
have EC numbers 3.4.23.16 (HIV-1 retropepsins). More analysis on the homogenity of
the clusters is given on http://pitgroup.org/seqclust/bsites AAcodes/EC deviation.txt.

3.2 Effects of Parameters on Clustering Quality and Cluster Size
Distribution

Within our binding site model, distance function and clustering algorithm, three main
parameters affected the properties of clustering: OPTICS minpts, OPTICS cut-level
and distance function’s gp. We examined how these parameters affect the quality of
clustering measured by silhouette coefficient.

• Effect of parameter gp: Increasing the gap penalty gp slightly improves the qual-
ity of the clustering. This is understandable, if we consider that the introduction
of a less strict gap penalty function automatically decreases the average distance
between clusters.
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Figure 3: Four binding sites (PDB ID’s: 1ZPB, 1RXP, 1C5Z, 2BZ6)
from the same cluster. The whole cluster is given in the on-line Figure
http://pitgroup.org/seqclust/bsites optics M02 No001.html. Note that the whole clus-
ter is colored to blue, and all the members of the cluster (between line num-
bers 702 and 1149, cluster ID: 28) have EC numbers of the form 3.4.21.X (ser-
ine proteases). More analysis on the homogenity of the clusters is given on
http://pitgroup.org/seqclust/bsites AAcodes/EC deviation.txt

• Effect of parameter minpts: Increasing minpts, two main effects can be ob-
served. On the one hand, an increased minpts means better quality clustering.
On the other hand, it also means drastically more binding sites classified as noise.
The main cause of the latter effect is that the clusters that exist in the database
but consist of less than minpts points are not recognized, they are marked as
noise. Based on this observation, it can be stated that our binding site database
contains a lot of small clusters.

• Effect of parameter OPTICS cut-level: Increasing cut-level decreases clustering
quality, and also the number of binding sites marked as ’noise’. Application of
an extremely high cut-level puts almost all binding sites into the same cluster;
the quality of such clustering can by no means considered high.

As a conclusion, we state that low minpts and cut-levels yield the best clustering
quality (while covering 70-80% of the binding sites found in PDB).

4 Conclusions
In this paper we presented a fast, sequence-based method capable of classifying the
binding sites contained in the publicly available Protein Data Bank. We determined pa-
rameter settings yielding a classification with the best quality (measured by silhouette
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Figure 4: Three binding sites from the same cluster. One site
from PDB ID of 1BDL, and two sites on 1W5V, these are HIV-
1 proteases. The whole cluster is given in the on-line Figure
http://pitgroup.org/seqclust/bsites AAcodes/bsites optics M02 No001.html. Note
that the whole cluster is colored to deep violet, and almost all the members of the
cluster (between line numbers 1210 and 1435) have EC numbers of the form 3.4.23.16
(HIV-1 retropepsins). More analysis on the homogenity of the clusters is given on
http://pitgroup.org/seqclust/bsites AAcodes/EC deviation.txt

coefficient). Our main result is a sequence-based approach, derived from 3D structures,
used for binding site clustering (rather than three-dimensional binding site structure),
that allows multiple sequences to occur at each binding site. We also evaluated our clus-
tering results with a large, colored diagram (given at the URL http://www.pitgroup.org/se-
qclust), where the colors correspond to the EC numbers of the proteins, containing
the binding sites. As witnessed by the colored diagram, and also by the numerical
deviations given in http://pitgroup.org/seqclust/bsites AAcodes/EC deviation.txt, our
method has a clear-cut biological significance. The method presented in this work can
help reveal evolutionary related binding sites and can also be used for filtering the re-
dundancies (i.e., multiple occurring binding sites) from the PDB. A possible step for
further research can be the creation of aggregate sequence-set-profiles for each binding
site cluster, generating binding site families similar to the Protein Families Database
(Pfam) [48, 49].

Acknowledgement. This work was supported by Hungarian Scientific Research
Fund (NK-67867), and by the Hungarian National Office for Research and Technology
(OMFB-01295/2006 and TB-INTER).
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Color Cut-level
Red 20%

Green 30%
Blue 40%
Cyan 50%

Magenta 60%
Yellow 70%

Table 2: Colours assigned to different OPTICS cut-levels

Figure 5: Silhouette coefficient dependence on parameter minpts, if unclustered bind-
ing sites are also taken into account at silhouette coefficient determination (gp = 1

10
).

The color coding is given in Table 2.
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