
Separating the Communication Complexities

of MOD m and MOD p Circuits

Vince Grolmusz*

Max Planck Institute for Computer Science and Eötvös University

ABSTRACT:

We prove in this paper that it is much harder to evaluate depth–2, size–N circuits

with MOD m gates than with MOD p gates by k–party communication protocols: we

show a k–party protocol which communicates O(1) bits to evaluate circuits with MOD p

gates, while evaluating circuits with MOD m gates needs Ω(N) bits, where p denotes a

prime, and m a composite, non-prime power number. As a corollary, for all m, we show a

function, computable with a depth–2 circuit with MOD m gates, but not with any depth–2

circuit with MOD p gates.

Obviously, the k–party protocols are not weaker than the k′–party protocols, for

k′ > k. Our results imply that if there is a prime p between k and k′: k < p ≤ k′, then

there exists a function which can be computed by a k′–party protocol with a constant

number of communicated bits, while any k–party protocol needs linearly many bits of

communication. This result gives a hierarchy theorem for multi–party protocols.

1

1. INTRODUCTION

The connection between the circuit complexity and the communication complexity

plays an important role in the recent literature of the circuit lower bound theory.

The notion of the (2–party) communication complexity was introduced by Yao [11].

Due to the algebraic characterization of the communication complexity, several strong

lower bounds were proved for this model (see [6] for a survey). Many nice results appeared

in the literature concerning the connection of the (2–party) communication complexity

and the circuit complexity: [5], [7], [8], [9], [12].

The multi–party communication game, defined by Chandra, Furst and Lipton [3], is

an interesting generalization of the 2–party communication game. In this game, k players:

P1, P2..., Pk intend to compute the value of g(A1, A2, ..., Ak), where g : {0, 1, 2, ...,m −

1}kn → N, where N denotes the set of natural numbers, m ∈ N and Ai ∈ {0, 1, 2, ...,m−

1}n, for i = 1, 2, ..., k. Player Pi knows every variable, except Ai, for i = 1, 2, ..., k. The

players have unlimited computational power, and they communicate with the help of a

blackboard, viewed by all players. Only one player may write on the blackboard at a time.

The goal is to compute g(A1, A2, ..., Ak), such that at the end of the computation, every

player knows this value. The cost of the computation is the number of bits written on

the blackboard for the given A = (A1, A2, ..., Ak). The cost of a multi–party protocol is

the maximum number of bits communicated for any A from {0, 1, 2, ...,m − 1}nk. The

k-party communication complexity, C(k)(g), of a function g, is the minimum of costs of

those k-party protocols which compute g.

The theory of the 2–party communication games is well developed [6], but much less is

known about the multi–party communication complexity of functions. As a general upper

bound, P1 can compute any function of A with n bits of communication: P2 writes down

the n bits of A1 on the blackboard, P1 reads it, and computes the value g(A) at no cost.

The additional cost of diffusing the result g(A) to other players is the binary length of

g(A).

2

An important progress was made by Babai, Nisan and Szegedy, [2], proving an

Ω(n
4k) lower bound for the k–party communication complexity of the GIP function. Gold-

mann and H̊astad [13] found a surprising application of the BNS–lower bound to circuit–

complexity.

In this paper we use multi–party techniques to characterize some hard–to–handle circuit

classes.

Smolensky [10] showed an exponential lower bound for the sizes of circuits with

MOD p, AND and OR gates, using algebraic methods in finite fields. Deriving superpoly-

nomial lower bounds — without using uniformity conditions — for the size of circuits with

MOD m gates remained unsuccessful, despite the widespread opinion that the powers of

MOD m gates and MOD p gates do not differ considerably, where (and throughout this

paper) m is a non-prime power composite number and p is a prime. Recently, for uniform

circuits with MOD m, AND and OR gates, Allender and Gore [1] showed a subexponential

lower bound for the permanent function.

On the other hand, Kahn and Meshulam [4] showed that ORn can be computed by a

depth–2 circuit with MOD (2p) gates, while it can not be computed by any constant-

depth circuits with MOD p gates.

We show a large gap between multi–party complexities of evaluating circuits with MOD p

and MOD m gates, where a MOD r gate outputs 1 if the sum of its input bits is divisible

by r, otherwise it outputs 0.

Definition 1. Let C be a circuit, and let k ≥ 2 be an integer. Let X denote the set of

the input–variables of C, i.e. X = {x1, x2, ..., x`}. We say that circuit C is k-evaluated

with b bits of communication, if for all partitions of X into k classes X1,X2, ...Xk, there

exists a k–party protocol with players P1, P2, ..., Pk, such that all the players know circuit

C and partition X1,X2, ...Xk, and player Pi knows the values of all the variables, except

those in Xi, for i = 1, 2, ..., k; and the k–party protocol computes the output of the circuit,

3

communicating at most b bits.

Heuristically, we can consider a circuit to be “hard” if it needs a large number of commu-

nicated bits for evaluation, otherwise it can be said “easy”. The statement of the main

lemma of [2] (whose generalization is our Lemma 12.), implies that the circuit, with a PAR-

ITY gate at the top and fan–in k AND gates at level one is hard for k–party protocols.

The lower bound of [13] uses the fact that any circuit, with a SYMMETRIC gate at the

top, and arbitrary gates of fan–in at most k − 1 at level 1 are easy for k–party protocols.

Szegedy has considered the (2–party) communication complexity of evaluating Boolean

functions in [9], using the 2–party version of Definition 1. He proved that circuits with

gates of bounded symmetric communication–complexity, can be simulated by circuits with

MOD m, AND and OR gates of similar depth and size.

Obviously, if m and p are constants, then there is no difference between the evaluations

of one MOD m or one MOD p gate. However, we shall show here, that if we consider

two layers of MOD p gates versus two layers of MOD m gates, the difference is dramatic

(Theorem 2 vs. Theorem 5), and the k–party technique becomes very important (Theorem

2 vs. Theorem 3).

Theorem 2. Let p be a prime, k ≥ p an integer, and let C be a circuit of depth 2 and size

N with a MOD p` gate on the top, for 1 ≤ ` ≤ bk/pc and N − 1 MOD p gates on level 1.

Then C is k–evaluated with O(k`) bits of communication.

Note. When p and k are constants, then the circuit is k–evaluated by a constant number

of communicated bits.

Remark. As Richard Beigel pointed out to us [14], one may allow negated MOD p` and

negated MOD p gates in circuit C in Theorem 2, since a negated MOD p gate on level 1

can be simulated with p`−1 copies of MOD p gates plus one constant-gate 1. If the circuit

has a negated MOD p` gate at the top, then it can also be evaluated by the same protocol

as the original circuit C, as we shall see in the proof of Theorem 2.

4

Theorem 3. Let q > k, and N ∈ N. Then there exists a depth–2, size–N circuit with

MOD q gates, which needs Ω(N
4k) bits of communication, if evaluated by any k–party

protocol.

Let us note that the k–party protocols separate the powers of the circuits with MOD p

gates and with MOD q gates, where q > k ≥ p.

The next is an immediate corollary of Theorem 2:

Corollary 4. Let k ≥ 2, integer, and let f : {0, 1, 2, ...,m− 1}kn → N be a function, and

suppose that the k–party communication complexity of f is non–constant. Then f cannot

be computed by a depth–2 circuit of MOD p gates, for p ≤ k.

Theorem 5. Let m be a positive integer with at least two different prime divisors, p1

and p2, and let N and k be positive integers. Then there exists an explicitly constructible

depth–2, size–N circuit C with MOD m gates on the first and on the second level, such

that the k-evaluation of C needs Ω(N
ck

m
) bits of communication, where constant cm > 1

depends only on m.

Obviously, the k–party communication complexity of the function, computed by C, is

Ω(N
ck

m
), so, by Corollary 4, for any p ≤ k, this function cannot be computed by any depth–

2 circuits with MOD p gates. For any m and p, choosing a k ≥ p, this result separates the

powers of depth–2 circuits with MOD m and with MOD p gates.

It is easy to see that the k′–party protocols are not weaker than the k–party protocols,

for k′ > k. Theorem 2, and, on the other hand, Theorem 3 directly imply the following

hierarchy–theorem:

Theorem 6. Let k < k′ two positive integers, and suppose that there is a prime p between

k and k′: k < p ≤ k′. Then for all N ∈ N, there exists a function of kN variable which

can be computed by a k′–party protocol with a constant number of communicated bits,

while any k–party protocol needs Ω(N) bits of communication to compute the function.

5

2. SEPARATING CIRCUIT–CLASSES

Proof of Theorem 2. By Definition 1, we must show a k–party protocol for any k–

partition {X1, X2, ...,Xk} of set X which evaluates C with O(k`) bits of communication.

Let the partition {X1, X2, ...,Xk} be fixed.

The players first compose a matrix B ∈ {0, 1, 2, ..., p−1}(N−1)×k, then play a k–party

protocol, using data only from this matrix. Let Bi denote column i, Bj row j of B, and

Bji the entry in the intersection of Bi and Bj . Let G1, G2, ..., GN−1 denote the MOD p

gates on level 1 of C. Gate Gj will be corresponded to row Bj as follows:

Bji is the sum, modulo p, of the values of those inputs of Gj which are in class Xi. The

value of x` (or x̄`) should be added with multiplier c` if Gj is connected to x` (or to x̄`)

with c` wires.

Let us observe that players can compose matrix B without any communication, and Pj

knows every column of B, except Bj , j = 1, 2, ..., k.

It is easy to see that circuit C outputs 1 if and only if the number of those rows of B,

whose sums are divisible by p, is 0 mod pbk/pc.

Lemma 7. Let B ∈ {0, 1, 2, ..., p− 1}n×k, where p is a prime and k ≥ p an integer. Then

there exists an explicitly constructible protocol, which computes the number, modulo p`,

of those rows of B, whose sums are divisible by p. Moreover, this protocol uses O(k`) bits

of communication for 1 ≤ ` ≤ bk/pc.

Proof. The following protocol “MOD m” was first described in [15] and was only used

to matrices with 0-1 entries. The present version is applied to matrices with entries

{0, 1, ...,m− 1}, and its analysis is much more intricate than that of [15].

We state that the following protocol will satisfy the requirements, with m = p:

The strategy of the players in protocol MOD m is the following: Player Pi (1 ≤ i ≤

k) assumes that column i of B, Bi is the all–1 vector. P1 – using his assumption –

6

communicates the number of rows in each congruency– classes modm:

α = (α0, α1, ..., αm−1),

where αi denotes the number of those rows, whose sums are believed to be i mod m. Next

P2 corrects P1 in case of those rows which begin with 0 or 2, or 3, or ..., m− 1, instead of

the assumed 1: P2 communicates the corrections, to be added to vector α. P2 computes

this correction, assuming that he knows the entire input. Then P3 corrects P1 and P2,

in case of those rows, which begins with two non–ones, and so on, until Pk comes. Then

Pk corrects P1, P2, ..., Pk−1 in case of those rows which begins with k − 1 non–ones. The

protocol makes errors only in the case of those rows, for which neither of the assumptions

were satisfied: the rows without 1′s. Every other row will be counted correctly: since at

least one player’s assumption was right, he saw the row correctly, and counted it to the

proper congruency–class, corrected the errors of the players with lower indices. Player Pi

will not count those rows, which contain a 1 in a position lower than i.

Example. Let m = p = 3, k = 3, and consider row 022.

P1 assumes this row to be 122, so he counts this row to vector α as (0, 0, 1).

P2 assumes this row to be 012, so he counts it as (1, 0, 0), and P2 assumes that P1 saw the

row to be 112, and because of this, P1 communicated (0, 1, 0) for this row, which should

be corrected by P2, subtracting it. In total, P2 adds (1,−1, 0) to the α of P1.

P3 assumes the row to be 021, he adds (1, 0, 0), and he corrects first P1, next P2. P3

assumes that P1 saw the row to be 121, and corrects him adding (0,−1, 0) to α. P3

assumes that P2 saw the row to be 011, and corrects him by adding (0, 0,−1). However,

P3 assumes that P2 erroneously corrected P1, P3 thinks that P2 thinks that P1 saw the

row to be 111, so P2 is thought to correct P1 adding (−1, 0, 0), so P3 corrects P2 by adding

(1, 0, 0). So P3 adds in total (2,−1,−1).

The sum of the corrections here is (3,−2, 0) instead of the correct value (0, 1, 0).

Let us observe that (3,−2, 0) ≡ (0, 1, 0) (mod 3), i.e. the value computed is correct

7

if seen modulo 3. The following lemma gives a formula for the number, computed by our

protocol for rows without entry “1”. We shall see that the error is 0 (mod pbk/pc).

Notation 8. Let N denote the set of natural numbers. We denote the elements of set Nm

by small–case greek letters, and we index their coordinates from 0 through m−1. Let Sn×k

denote the set of all n× k matrices with entries from set S. Let B ∈ {0, 1, ...,m− 1}n×k.

Let

δ(m)(B) = (δ0, δ1, ..., δm−1)

denote a vector where δi is the number of those rows of B, which are congruent to i

(mod m). Let v ∈ {0, 1, ...,m − 1}k, then CT (v,B) denotes the number of those rows of

B, which are equal to v. Let 0 = (0, 0, ..., 0) ∈ {0, 1, ...,m− 1}k.

Lemma 9. Protocol MOD m computes the number

δ(m)(B)−
∑

v∈{0,2,3,...,m−1}k

CT(v,B)wv,

where wv ∈ Nm, and when v contains d2 2 coordinates, d3 3’s, ..., dm−1 m − 1’s, and d0

0’s, then

wv = νΠd(v)(I −Πm−1)d2(I −Πm−2)d3 ...(I −Π2)dm−1(I −Π)d0 ,

where ν = (1, 0, 0, ..., 0) ∈ Nm, d(v) = 2d2 + 3d3 + ...+ (m− 1)dm−1, and Π is the m×m

cyclic right–shift permutation matrix:

Π =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 0 . . . 0 0


Let us note that a row vector multiplied by Π is the vector with coordinates shifted

with one position to right. Similarly, if a row-vector is multiplied by Π−1 the result is the

vector, with coordinates shifted with one position to left.

8

Before proving Lemma 9, let us see how it implies Lemma 7. Let m = p. Since matrix Π

commutes with its own powers, one can write wv into the form:

wv = νΠd(v)(I −Π)kP (Π),

where P (Π) is a polynomial of matrix Π, since k = d2 + d3 + ...+ dm−1 + d0, and one can

write (I −Πs) = (I −Π)Q(Π), where Q is also a polynomial.

By the binomial theorem:

(I −Π)p =
(
p

0

)
I −

(
p

1

)
Π + ...+ (−1)p

(
p

p

)
Πp ≡

≡ I + (−1)pΠp ≡ I + (−1)pI ≡ 0 (mod p),

so

((I −Π)p)b
k
p c ≡ 0 (mod pb

k
p c), and

(I −Π)k ≡ 0 (mod pb
k
p c).

Hence

wv ≡ 0 (mod pb
k
p c),

for all v ∈ {0, 2, 3, ..., p− 1}k. This means that protocol MOD p computes δ(m)(B) mod

pb
k
p c.

However, the players are enough to communicate their α vectors only mod p`. Hence

each player communicates p numbers of size O(` log p), and protocol MOD p uses

O(k`p log p) = O(k`) bits of communication, which is constant if k is constant.

Proof of Lemma 9. First we prove

Sublemma 10. The vector, computed by protocol MOD m for a row v ∈ {0, 2, 3, ..., p−

1}k is the same for any permutation of the coordinates of v.

Proof. It is enough to prove that our protocol computes the same vector for

v = (v1, v2, ..., vi, vi+1, ..., vk)

9

and

v′ = (v1, v2, ..., vi+1, vi, ..., vk).

Obviously, Ps communicates the same vector for v and v′ if s 6= i or s 6= i+ 1. Pi assumes

v to be vPi
and v′ to be v′Pi

:

vPi
= (v1, v2, ..., 1, vi+1, ..., vk)

v′Pi
= (v1, v2, ..., 1, vi, ..., vk),

while Pi+1 assumes v to be vPi+1 and v′ to be v′Pi+1
:

vPi+1 = (v1, v2, ..., vi, 1, ..., vk)

v′Pi+1
= (v1, v2, ..., vi+1, 1, ..., vk).

Pi sees v in the same congruency–class as Pi+1 sees v′, and Pi sees v′ in the same

congruency–class as Pi+1 sees v. Moreover, Pi corrects players P1, P2, ..., Pi−1 for row

v exactly as Pi+1 corrects them in row v′, and Pi corrects players P1, P2, ..., Pi−1 for row

v′ exactly as Pi+1 corrects them in row v. Pi+1 ,both in v and in v′, corrects Pi assuming

(v1, v2, ..., 1, 1, ..., vk).

So the sum of the vectors, communicated by Pi and Pi+1 is the same for v and for v′.

By Sublemma 10, we may assume that the first d2 coordinates are 2′s, then d3 3’s,...,

dm−1 m− 1’s, and, at the end, d0 0’s. Let us note that the correct vector, to be added up

for v to get δm(B), is νΠd(v). However:

P1 assumes the first coordinate to be 1 instead of 2, so he communicates

νΠd(v)Π−1.

P2 assumes the second coordinate to be 1, so he adds up νΠd(v)Π−1, too, but corrects P1

by subtracting νΠd(v)Π−2, since the sum, supposed to be seen by P1, is less by one. So P2

communicates:

νΠd(v)Π−1(I −Π−1).

10

Pi (i ≤ d2) communicates the same vector as Pi−1 communicated plus the correction for

Pi−1. This correction is (−Π−1) times the vector, communicated by Pi−1, so Pi commu-

nicates:

νΠd(v)Π−1(I −Π−1)i−1.

The sum of the vectors communicated by P1, P2, ..., Pd2 is:

β(2) = νΠd(v)Π−1
[
I + (I −Π−1) + (I −Π−1)2 + ...+ (I −Π−1)d2−1

]
=

= νΠd(v)
(
I − (I −Π−1)d2

)
.

Remark: d2 = 0 implies that β(2) = 0.

Pd2+1 assumes vd2+1 to be 1, instead of the correct 3. So Pd2+1 sees the sum of v one

less than Pd2 has seen, this also applies to the corrections for P1, P2, ..., Pd2−1. So Pd2

communicates νΠd(v)Π−1(I−Π−1)d2−1Π−1 plus the correction for Pd2 : what is the (−Π−2)

times that Pd2 has communicated. Pd2 communicates:

νΠd(v)Π−1(I −Π−1)d2−1(Π−1 −Π−2) =

= νΠd(v)Π−2(I −Π−1)d2 .

Pd2+2 tells the same for the sum of v and the corrections for P1, P2, ..., Pd2 as Pd2+1, but

he also corrects Pd2+1, by subtracting Π−2 times the vector that Pd2+1 has communicated,

so in total, Pd2+2 communicates:

νΠd(v)Π−2(I −Π−1)d2(I −Π−2).

Pd2+i (i ≤ d3) communicates

νΠd(v)Π−2(I −Π−1)d2(I −Π−2)i−1.

11

β(3), the sum of the vectors, communicated by Pd2+1, Pd2+2, ..., Pd2+d3 is

β(3) = νΠd(v)(I −Π−1)d2
(
I − (I −Π−2)d3

)
.

Similarly, β(j), the sum of the vectors, communicated by Pd2+...+dj−1+1, Pd2+...+dj−1+2, ...,

Pd2+...+dj−1+dj , is

νΠd(v)(I −Π−1)d2 ...(I −Π−j+2)dj−1
(
I − (I −Π−j+1)dj

)
The result of the telescopic sum β(2) + β(3) + ...+ β(m) + β(0) is:

νΠd(v) − νΠd(v)(I −Π−1)d2 ...(I −Π−m+1)dm .

So the vector wv is equal to

wv = νΠd(v)(I −Π−1)d2(I −Π−2)d3 ...(I −Π−m+1)dm .

Noticing that Πm = I, our result follows.

Proof of Theorem 5. By Definition 1, we must give a circuit C and a k partition

X1, X2, ...Xk of X, for which every k–party protocol needs Ω(N
ck

m
) bits for evaluation. In

fact we shall prove the statement only for k’s of the form k = pc1, since if for a k–partition

X1, X2, ...,Xk the k-evaluation of circuit C needs a bits of communication, then for k′ < k,

and for the partition X ′1 = X1, ..., X
′
k′−1 = Xk′−1,X

′
k′ =

⋃k
i=k′ Xi, the k′–evaluation needs

also at least a bits of communication. If we prove a lower bound of Ω(N
4k) for the least

k ≥ k′ of the form k = pc1, then it implies a lower bound Ω(N
ck′

m

) with cm = 4p1 for the

original k′, and that is stated in the theorem.

Let X = {y1, y2, ..., ym;x11, x12, ..., x1k, x21, ..., x2k , ..., x(N−1)1, ..., x(N−1)k},

The partition on X is defined as follows: X1 = {y1, y2, ..., ym;x11, x21, ..., x(N−1)1}, and

Xj = {x1j , x2j , ..., x(N−1)j}, for j = 2, 3, ..., k.

Let q1 = m/p1, and q2 = m/p2.

12

Circuit C is defined as follows: there is a MOD m gate G on the top, and MOD m

gates G1, G2, ..., GN−1 on the first level; the variables of X are situated on the bottom.

G is connected to variables y1, y2, ..., ym with one–one input wire, while to each gates

G1, G2, ..., GN−1 with q1 input wires. The fan–in of G is (N − 1)q1 + m. Gate Gi is

connected to each variable from {xi1, xi2, ..., xik} with q2 input–wires, the fan–in of the

MOD m gates is kq2.

Let us remark that Gi is 1 iff xi1+xi2+...+xik ≡ 0 (mod p2). Suppose that
∑m
i=1 yi ≡ q1s

(mod m). Then G is 1 iff q1s + q1(G1 + G2 + ... + GN−1) ≡ 0 (mod m). Or, in other

words, G is 1 iff s+ (G1 +G2 + ...+GN−1) ≡ 0 (mod p1).

Let A denote matrix {xij}, i = 1, 2, ..., N − 1; j = 1, 2, ..., k. Because of the definition of

our partition, player j knows all the columns of this matrix, except column j. Gate Gi is

1 iff the sum of row i is divisible by p2, and gate G is 1 iff the number of those rows of A,

whose sums are divisible by p2, is congruent to −s (mod p1).

Suppose now, that players P1, P2, ..., Pk evaluates circuit C with communicating b bits.

Then for any s and for any A ∈ {0, 1, }(N−1)×k, they can decide, communicating b bits,

whether the number of those rows of A, whose sums are divisible by p2, is congruent to

−s (mod p)1, or not. So the players can compute the number, mod p1, of those rows of

A, whose sums are divisible by p2 with bp1 bits of communication.

The following lemma gives a lower bound to bp1:

Lemma 11. Let p1 and p2 be different primes, k = pc1, and A ∈ {0, 1}n×k. Then any

k–party protocol computing mod p1 the number of those rows of A which are divisible by

p2, needs Ω(n
4k) bits of communication.

Proof. By Lemma 9, players can compute vector

(1) δ(p2)(A)− ν(I −Π)kCT (0, A)

using O(k log n) bits of communication, where δ(p2)i (A) is the number of rows of A, whose

13

sum is ≡ i (mod p2), and Π is the p2 × p2 cyclic right-shift permutation matrix.

(I −Π)k =
k∑
i=0

(−1)
(
k

i

)
Πi ≡ I −Πpc

1 (mod p1),

since k = pc1 and p1 divides
(
k
i

)
if 0 < i < k.

Since ν = (1, 0, 0, ..., 0), ν(I−Π)p
c
1 = ν(I−Πpc

1) is the first row of (I−Πpc
1). The first entry

in the first row of Πpc
1 is 0, since Πpc

1 6= I, because p2 does not divide pc1. So the first entry

of vector ν(I −Πpc
1) is 1, thus the first coordinate of vector δ(p2)(A)− ν(I −Π)kCT (0, A)

is

(2) δ
(p2)
0 (A)− CT (0, A) (mod p1).

From the assumption, δ(p2)0 (A) mod p1 is computed by the protocol, say, with z bits of

communication. Then, because of (2), CT (0, A) mod p1 can also be computed using z +

O(k log n) bits of communication. The following generalization of ([2], Theorem 1) yields

that z +O(k log n) = Ω(n
4k).

Lemma 12. Let p be a prime, and A ∈ {0, 1, }n×k. Then any k–party protocol, which

computes CT (0, A) mod p, needs Ω(n
4k) bits of communication.

Proof. We adopt the notation and some of the definitions of [2]. Let S ⊂ {0, 1}n×k.

S is called a cylinder if the membership of S does not depend on column i, for some

i ∈ {1, 2, ..., k}. S is called a cylinder–intersection if it can be represented as the intersection

of some cylinders.

It is easy to verify that for any k–party protocol, the subset S ⊂ {0, 1}n×k, whose

elements, if they are taken as inputs, lead to the same string s of communicated bits, is

a cylinder intersection. Any cylinder intersection in {0, 1}n×k can be represented as the

intersection of at most k cylinders.

Definition 13. Let g : {0, 1}n×k → {0, 1, 2, ..., p− 1} be a function. The discrepancy of g

is

Γ(g) = max
S

∣∣∣ p−1∑
i=0

εiPr(g(A) = i, A ∈ S)
∣∣∣,

14

where ε is a p-th complex root of unity, which minimizes |1+ε|, and A is chosen uniformly

from {0, 1}n×k, and S runs over all the cylinder intersections of {0, 1}n×k.

Lemma 14. ([2], Lemma 2.2.) For any function g:

C(g) ≥ log
(

1
Γ(g)

)
.

Proof. Let S0 be the cylinder–intersection of the largest probability, on which g is con-

stant. Then Pr(S0) ≤ Γ(g), and, on the other hand, C(g) ≥ log
(

1

Pr(S0)

)
.

Let g(A) = gn,k,p(A) = CT (0, A) mod p, and let

f(A) = εg(A) = εCT (0,A).

Let

∆(k)(n) = max
φ1,φ2,...,φk

|E
A

(f(A)φ1φ2...φk)|,

where φi is a shorthand for φi(A) = φi(A1, A2, ..., Ak), where Aj denotes column j of

matrix A, and where the maximum is taken over all functions φi : {0, 1}n×k → {0, 1} such

that φi does not depend on Ai. E denotes the expected value on the uniformly distributed

A = (A1, A2, ..., Ak) ∈ {0, 1}n×k.

Let us note that ∆(k)(n) = Γ(gn,k,p). Because of Lemma 14, an upper bound to ∆(k)(n)

yields a lower bound to C(g).

Lemma 15.

∆(k)(n) ≤ µnk ,

where µ1 = 1
2 , and µi =

√
1+µi−1

2 .

Note: It is easy to show by induction that µk ≤ 1− 4−k, which is about e−4−k

.

Proof. The proof is by induction. For k = 1,

∆(1)(n) ≤ 2−n
∣∣∣(n

0

)
ε0 +

(
n

1

)
ε1 + ...+

(
n

n

)
εn
∣∣∣ =

15

= 2−n|(1 + ε)n| ≤ 2−n = µn1 ,

since |(1 + ε)| ≤ 1. Let k ≥ 2. Since φk does not depend on Ak:

∆(k)(n) ≤ E
A1,A2,...,Ak−1

∣∣∣(E
Ak

(f(A)φ1φ2...φk−1)
)∣∣∣.

We will use the following version of the Cauchy-Schwarz inequality:

Cauchy–Schwarz inequality. For any random variable x:

(E(x))2 ≤ E(x2).

Using the Cauchy–Schwarz inequality with

x =
∣∣∣ E
Ak

(f(A1, A2, ..., Ak)φ1φ2...φk−1)
∣∣∣,

and noticing that

x2 =
∣∣∣ E
Ak

(f(A)φ1φ2...φk−1)
∣∣∣2 =

=
(

E
Ak

(f(A)φ1φ2...φk−1)
)(

E
Ak

(f̄(A)φ1φ2...φk−1)
)
,

where f̄ denotes the complex conjugate of f .

We can estimate

(3) ∆(k)(n) ≤
[

E
A1,A2,...,Ak−1

(
E
Ak

(f(A)φ1φ2...φk−1)
)(

E
Ak

(f̄(A)φ1φ2...φk−1)
)] 1

2

=

=
[

E
U,V,A1,A2,...,Ak−1

(
fU f̄V φU1 φ

V
1 φ

U
2 φ

V
2 ...φ

U
k−1φ

V
k−1

)] 1
2

where U, V ∈ {0, 1}n, and fU stands for f(A1, A2, ..., Ak−1, U), f̄V stands for

f̄(A1, A2, ..., Ak−1, V), and φUi stands for φi(A1, A2, ..., Ak−1, U), φVi stands for

φi(A1, A2, ..., Ak−1, V).

Note: The domain of fU , fV and φUi , φVi is {0, 1}n×(k−1).

Let us partition the rows of matrix A′ = (A1, A2, ..., Ak−1) into four classes:

A00, A11, A01 and A10, where Axy contains row i of A′ iff Ui = x, Vi = y, 1 ≤ i ≤ n,

16

x, y ∈ {0, 1}. Let fUxy denote the restriction of fU to Axy: fUxy = εCT (0,Axy), for

x, y ∈ {0, 1}. fV is defined similarly.

From the definition of f :

fU = fU00f
U
01f

U
10f

U
11, and fV = fV00f

V
01f

V
10f

V
11.

So

fU f̄V = fU00f̄
V
00f

U
01f̄

V
01f

U
10f̄

V
10f

U
11f̄

V
11.

Let us observe that fU11f̄
V
11 = 1, since among those rows there are no all–0 ones, because

their last coordinates are 1. fU00 = fV00 = εCT (0,A00), so fU00f̄
V
00 = 1. Moreover, fU10 = ε0 = 1,

f̄V01 = ε0 = 1, so we have got:

fU f̄V = fU01f̄
V
10.

For i = 1, 2, ..., k − 1, let Ai be composed of two parts: Bi and Ci, where Ci corresponds

to the coordinates of Ai in the rows of A10, and Bi to the remaining coordinates.

LetξU,V,B1,B2,...,Bk−1
i (C1, C2, ..., Ck−1) = φUi (A1, A2, ..., Ak−1)φVi (A1, A2, ..., Ak−1). Then

we can estimate (3):

∆(k)(n) ≤

[
E
U,V

∣∣∣∣∣ E
B1,B2,...,Bk−1

fU01

(
E

C1,C2,...,Ck−1

(
f̄V10ξ1ξ2...ξk−1

))∣∣∣∣∣
] 1

2

,

since fU01 does not depend on the C ′is.

From the induction hypothesis:

∣∣∣ E
C1,C2,...,Ck−1

(
f̄V10ξ1ξ2...ξk−1

)∣∣∣ ≤ µm10
k−1,

where m10 is the number of rows in A10.

For i = 1, 2, ..., k− 1 let Bi be composed of two parts: Di and Fi, where Fi corresponds to

the coordinates of Bi in the rows of A01, and Di corresponds to the remaining coordinates.

Then

17

∆(k)(n) ≤
[

E
U,V,D1,D2,...,Dk−1

(
µm10
k−1

∣∣∣ E
F1,F2,...,Fk−1

(
fU01

)∣∣∣)] 1
2

.

Again, from the induction hypothesis, choosing φ1 = φ2 = ... = φk−1 = 1:

∣∣∣ E
F1,F2,...,Fk−1

(
fU01

)∣∣∣ ≤ µm01
k−1,

where m01 is the number of the rows of A01. So we have got

∆(k)(n) ≤
[

E
U,V,D1,D2,...,Dk−1

(
µm10+m01
k−1

)] 1
2

.

m10 + m01 is equal to the number of those coordinates i: Ui 6= Vi. Since U and V is

distributed uniformly, the probability that m10 +m01 = m is
(
n
m

)
2−n, so:

∆(k)(n) ≤
(

n∑
m=0

(
n

m

)
2−nµmk−1

) 1
2

=
(
2−n(1 + µk−1)n

) 1
2 = µnk ,

and this completes the proof of Lemma 15.

Lemma 15 yields that ∆(k)(n) ≤ µnk ≤ e−n4−k

, and from Lemma 14:

C(g) ≥ log
(
en4−k)

= Ω
(n

4k
)

which completes the proof of Lemma 12.

We have got that z + O(k log n) = Ω(n
4k), that is, z = Ω(n

4k), so any protocol computing

δ
(p2)
0 (A) mod p1 needs Ω(n

4k) bits of communication, and this is the statement of Lemma

11.

Since bp2 = Ω(n
4k), then b = Ω(n

4k) also holds, thus evaluating circuit C needs also Ω(n
4k)

bits of communication for k = pc1, and Ω(n
ck

m
) bits for general k. This completes the proof

of Theorem 5.

Proof of Theorem 3. Let p be a prime–divisor of q. Let X =

{y1, y2, ..., yq;x11, x12, ..., x1k, x21, ..., x2k, ..., x(N−1)1, ..., x(N−1)k}, The partition on X

18

is defined as follows: X1 = {y1, y2, ..., yq;x11, x21, ..., x(N−1)1}, and Xj =

{x1j , x2j , ..., x(N−1)j}, for j = 2, 3, ..., k. Let q1 = q/p.

Circuit C′ is defined as follows: there is a MOD q gate G on the top, and MOD q

gates G1, G2, ..., GN−1 on the first level; the variables of X are situated on the bottom.

G is connected to variables y1, y2, ..., yq with one–one input wire, while to each gates

G1, G2, ..., GN−1 with q1 input wires. The fan–in of G is (N − 1)q1 + q. Gate Gi is con-

nected to each variable from {xi1, xi2, ..., xik} with 1 input–wire. The fan–in of the MOD

q gate Gi is k, for i = 1, 2, ..., N − 1.

Let us remark that Gi is 1 iff xi1 = xi2 = ... = xik = 0. Suppose that
∑q
i=1 yi ≡ q1s

(mod q). Let A denote matrix {xij}, i = 1, 2, ..., N − 1; j = 1, 2, ..., k. Then G is 1 iff

q1s+ q1CT (0, A) (mod q). Or, in other words, G is 1 iff s+ CT (0, A) ≡ 0 (mod p).

Because of the definition of our partition, player j knows all the columns of matrix A,

except column j. Gate Gi is 1 iff row i is the all–0 row, and gate G is 1 iff the number of

the all–0 rows of A is congruent to −s (mod p).

Suppose now, that players P1, P2, ..., Pk evaluates circuit C′ with communicating b

bits. Then for any s and for any A ∈ {0, 1, }(N−1)×k, they can decide, communicating b

bits, whether the number of the all–0 rows of A, is congruent to −s (mod p)1, or not. So

the players can compute the number of the all–0 rows of A, mod p. From Lemma 12 our

statement follows.

REFERENCES

[1] E. Allender, V. Gore: A Uniform Circuit Lower Bound for the Permanent, preprint.

[2] L. Babai, N. Nisan, M. Szegedy: Multiparty Protocols and Pseudorandom Sequences,

Proc. 21st ACM STOC, 1989, pp. 1-11.

[3] A. K. Chandra, M. L. Furst, R. J. Lipton: Multi-party Protocols, Proc. 15th ACM

STOC, 1983, pp. 94–99.

19

[4] J. Kahn, R. Meshulam: On mod p Transversals, Combinatorica, 1991, (11) No. 1. pp.

17–22.

[5] M. Karchmer, A. Wigderson: Monotone Circuits for Connectivity Require Super–

Logarithmic Depth, Proc. 20th ACM STOC, 1988, pp.

[6] L. Lovász: Communication Complexity: A Survey, Technical Report, CS–TR–204–89,

Princeton University, 1989.

[7] R. Raz, A. Wigderson: Probabilistic Communication Complexity of Boolean Rela-

tions. Proc. 30th IEEE FOCS, 1989, pp. 562-567

[8] R. Raz, A. Wigderson: Monotone Circuits for Matching Require Linear Depth. Proc.

22nd ACM STOC, pp. 287–292.

[9] M. Szegedy: Functions with Bounded Symmetric Communication Complexity and

Circuits with MOD m Gates, Proc. 22nd ACM STOC, pp. 278–286.

[10] R. Smolensky, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit

Complexity, Proc. 19th IEEE FOCS, pp. 77-82, (1987).

[11] A.C. Yao: Some Complexity Questions Related to Distributive Computing, Proc. 11th

ACM STOC, 1979, pp. 209–213.

[12] A.C. Yao: Circuits and Local Computation, Proc. 21st ACM STOC, 1989, pp. 186–

196

[13] M. Goldmann, J. H̊astad: On the Power of Small–Depth Threshold Circuits, Proc.

31st IEEE FOCS, 1990, pp. 610–618.

[14] R. Beigel, private correspondence.

[15] V. Grolmusz: Circuits and Multi–Party Protocols, Technical Report No. MPII-1992-

104, Max Planck Institute for Computer Science, Saarbruecken, Germany, 1992,

20

