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ABSTRACT

We present a multi-party protocol which computes the Generalized Inner Product (GIP)
function, introduced by Babai, Nisan and Szegedy [BNS]. Our protocol shows that the
lower bound for the multi—party communication complexity of the GIP function, given by
[BNS], cannot be improved significantly.
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1. INTRODUCTION

In the two-party communication game, introduced by Yao [Y], there are two players,
Py and Py, and a function f : {0,1}?*" — {0,1}. The goal of the players is to compute
the value of f(Ag, A1) cooperatively, for some Ay, Ay € {0,1}", where A is known only
to Py, and Ay is known only to Py, and after the computation both players should know
the value f(Ap, A1). The players have unlimited computational power, and both know
the definition of f. Py and P; communicate via a blackboard, which is seen by both of
them: they are allowed to write bits on the blackboard. The cost of the computation is
the number of bits communicated. Since the players have unlimited computational power,
every function can be computed by communicating n + 1 bits.

The following generalization of the two—party communication game by Chandra, Furst
and Lipton [CFL] has lead some nice results in the complexity theory (c.f. [BNS], [GH]): In
the multi—party communication game, k players: Py, Py, ..., P;—1 intend to compute the
value of g(Ag, A1, ..., Ag_1) cooperatively, where g : {0,1}*" — {0,1} and 4; € {0,1}",
for 2 = 0,1,...,k — 1. Player P; knows the value of each variable, except A;, for ¢+ =
0,1,...,k—1. Asin the two—party game, the players have unlimited computational power,
and they communicate with the help of a blackboard, viewed by all players. Only one player
may write on the blackboard at a time. The goal is to compute g(Ag, A1,..., Ag_1), such
that at the end of the computation, all players know this value. The cost of the computation
is the number of bits written on the blackboard for the given A = (Ag, Ay,..., Ak—1) €
{0,1}™*. The cost of a multi-party protocol is the maximum number of bits communicated
for any A from {0,1}"**. The k-party communication complexity, C(g) of a function ¢ is
the minimum of costs of those k-party protocols which compute g.
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As in the two—party case, every function can be computed by communicating n + 1
bits. The theory of the two—party communication games is well developed (c.f. [LS], or [L]
for a survey), but much less is known about the multi-party communication complexity
of functions. Babai, Nisan and Szegedy examined the Generalized Inner Product (GIP)
function in [BNS].

Definition 1. Let A € {0, 1}k, We shall refer to the i'" column of A as A;, the j*
row of A as A7, and to the i'" entry in row j as Al. Let GIP(A) denote the number of
the all-1 rows of matrix A, modulo 2.

In other words, if column A; is considered to be the characteristic vector of a subset
Y, of a fixed n-element set for : = 0,1,...,k — 1, then

GIP(A):|Y0ﬂY1ﬂY2ﬂﬂYk_1|Il’lOd2

In [BNS], the following important lower bound is proved for the multi—party communication
complexity of GIP:

Theorem 2. [BNS, Theorem 2]

C(GIP) = Q (4%) .

For several interesting applications of Theorem 2 in Turing machine simulation trade-
offs or in circuit complexity theory, see [BNS] or [GH].

We describe a protocol, named “TELESCOPE”, in Section 2, which shows that the lower
bound of Theorem 2 is close to the optimal:

Theorem 3.

n
C(GIP)< (2k—1) [m-‘ .

Remarks. Independently from us, Nisan and Szegedy have also shown that the lower
bound in Theorem 2 cannot be improved significantly (unpublished) [B].

Babai, Nisan and Szegedy prove another (n/c*) lower bound for the k party communi-
cation complexity of the quadratic character (Legendre symbol) of the mod p sum of k
variables [BNS]. They also mention that it would be important to find functions where
the lower bound does not deteriorate exponentially as a function of &k, e.g. a lower bound
Q(n/k°) would be most desirable. Here we show that no such lower bound holds for the
GIP function; but we do not know whether or not the other function of [BNS| may satisfy
such a stronger bound.



2. THE PROTOCOL

Consider an n x k binary matrix A with columns Ay, Ay, Ay, ..., Ax_1, where player P;
knows every column vector, except A;, ¢t =0,1,2,...,k — 1.

We note that if it is known to Py that A has no row of the form (0,1,1,...,1), then
Py can simply announce the result by counting (mod 2) the number of rows of the form
(%,1,1,...,1). (All such rows must now begin with “1”.)

The following lemma generalizes this idea:

Lemma 4. Let o € {0,1}*. Suppose it is known to each player that a does not occur
as a row of A. Then there exists a k—party protocol which computes GIP(A) with a
communication of at most k bits.

Proof. If o contains only 1’s, GIP(A) = 0, and they are done, without communicat-
ing a bit.
Suppose now, that « has some 0-coordinates. Without loss of generality we may assume,
that its first £ > 1 coordinates are O:

agp=a1=...=ay_1=0; ar=ayy1=...=a_1 =1

Only the first k players, with corresponding 0 coordinates in «, will participate in the
communication game. The game is played as follows:

PROTOCOL TELESCOPE

Let y; denote the number of those rows of A of the form (0,...,0,1,...,1), where the first
1 occurs in position 2.

For every ¢, 0 < < £ — 1, player P; announces the parity of the number of rows of the
form (0,...,0,%,1,...,1), where the % is at place ¢.

Observation: This number is y; + yi41.
Subsequently, each player privately computes the mod 2 sum of all numbers announced.

Observation: The result of this telescoping sum is yy + y¢ mod 2. But, by assumption,
y¢ = 0; therefore the result is the desired quantity, yo mod 2.

The cost was ¢ bits of communication. B

Proof of Theorem 3. Let us divide the rows of matrix A into blocks of 2¥~1 — 1
contiguous rows plus a leftover of at most 287! — 1 rows. The players cooperatively
determine the number of all-1 rows in each block, and then privately add up the results

to obtain GIP(A).

Next we show how to obtain the number of all-1 rows for a single block at the cost of 2k —1
bits of communication. Py knows all the columns, except the first, so he knows at most
2k=1 _ 1 rows of length k — 1, so he can find an o' € {0,1}*7!, o' = (a1, a9,...,0p_1)
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which is not a row of the ¥ — 1 column wide part of the block seen by P,. Let
a=(0,a1,as,...,ar_1). Then a does not occur as a row in this block. So if Py commu-
nicates o' with k — 1 bits, then every player exchanges it to a privately, and they play the
TELESCOPE protocol with at most k bits, exchanging at most 2k — 1 bits in total. |
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