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ABSTRACT

We would like to cover all the off-diagonal elements of an nxn matrix by non-necessarily
contiguous rectangular submatrices; the diagonal elements cannot be covered. It is not
difficult to give a cover with 2[logn| rectangles, where some off-diagonal elements are
covered as many as [logn]|-times, or another cover, using n rectangles and any off-
diagonal elements of the matrix is covered only once. We show that one cannot attain
both low covering multiplicity and a small number of covering rectangles at the same
time: We prove a trade-off between these two numbers.



1 Introduction

We are interested in the following problem: cover all the off-diagonal elements of the
nxn matrix M = {m;;} by non-necessarily contiguous rectangular submatrices (called
rectangles); the diagonal elements cannot be covered. It is not difficult to give a cover
with 2[logn]| rectangles, where some off-diagonal elements are covered as many as
[log n]-times: Indeed, let us consider submatrices

U ={mij 14, =0,5:.=1}; Vy={my; 14, = 1,5, =0}

where i; and j; denotes the ¢*® bit in the binary form of i and j, respectively. Clearly,

both U; and V; are rectangles, their combined number is 2[logn|, and they cover all
the off-diagonal elements of M. It is also obvious, that entry m;; is covered h(3, j)-
times, where h(7, j) stands for the Hamming-distance of the binary forms of 7 and j.
Consequently, there are entries in M which are covered [logn]-times.

Another cover, where all the off-diagonal entries of M are covered once can be given
as follows: For t =1,2,...,n we define

Wy ={my;:j€{1,2,...,n} — {t}}.

Certainly, the n pairwise disjoint W}’s cover all the off-diagonal elements of M exactly
once.

So we have got a cover with few rectangles but with a large multiplicity, and another
one with a lot of rectangles and multiplicity 1. The question is whether can we cover
the off-diagonal elements with few rectangles and with a low multiplicity? The answer
is no, as it is implied by the following theorem:

Theorem 1 (i) Suppose, that the off-diagonal elements of the n X n matrix M are
covered by s rectangles while none of the diagonal elements are covered, and every
entry of M are covered by at most d rectangles. Then

()

(1) Suppose, that the entries under the diagonal of the n x n matriz M are covered by
s rectangles, and none of the diagonal or above-the-diagonal elements are covered,
and every entry of M are covered by at most d rectangles. Then

(i)-ﬁ-----ﬁ-(;)Zn—l. 2)

Using graph-theoretical language, we immediately get the following re-formulation
from part (i):



Grolmusz: Trade-off for matrix covering 2

Corollary 2 Suppose we would like to cover the edges of the 2n-vertex complete bipar-
tite graph K, ,, with color classes A = {uy, Uy, ..., up} and B = {v1,v2, ..., v,} with the
edges of complete bipartite graphs, without covering any of the edges u;v;, i = 1,2,...,n.
Suppose that we have s complete bipartite graphs in the cover, and the mazimum mul-
tiplicity of covering an edge is d. Then (1) is satisfied.

An easy corollary of part (ii) is the following:

Corollary 3 Suppose we would like to cover the edges of the n-vertex complete graph
with the edges of complete bipartite graphs. Assume that we have s complete bipartite
graphs in the cover, and the mazimum multiplicity of covering an edge is d. Then (2)
1s satisfied.

Note, that the rectangles in the cover of Corollary 3 can be partitioned into pairs,
and the members of these pairs are symmetric to the diagonal, while in Corollary 2
and in Theorem 1 part (i) this property does not necessarily hold.

We cannot show that our Theorem 1 is sharp. It is easy to construct rectangle-
covers of m + 2[log[n/m]| rectangles and 1+ [log[n/m|]| mutiplicity by unifying the
n-cover and the 2logn cover, but we do not think that this construction is optimal.

1.1 Related work

Graham and Pollack [GP72] asked that how many edge-disjoint bipartite graphs can
cover the edges of an m-vertex complete graph. They proved that n — 1 bipartite
graphs are sufficient and necessary. Later, Tverberg gave a very nice proof for this
statement [Tve82]. Having relaxed the disjointness-property, Babai and Frankl [BF92]
asked that what is the minimum number of bipartite-graphs, which covers every edge
of an n-vertex complete graph an odd multiplicity. Babai and Frankl proved that
(n—1)/2 bipartite graphs are necessary. The optimum upper bound for the odd-cover
was proved by Radhakrishnan, Sen and Vishwanathan [RSV00]. Radhakrishnan, Sen
and Vishwanathan also gave matching upper bounds for covers, when the off-diagonal
elements of matrix M are covered by multiplicity 1 modulo a prime number.

1.2 Motivation

Our questions, leading to Theorem 1 were motivated by examining the constructibility
or at least the existence of low-rank matrices, containing 0’s in the diagonal and non-
zeroes elsewhere. We have given constructions of such matrices in [Gro00], with the
help of the BBR-polynomials [BBR94|. Our goal was to find lower rank matrices of
this property, and it turned out that the rank depends on the degree of the BBR
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polynomial. Roughly, the degree of the BBR-polynomial in that construction depends
on the covering-multiplicity d, so that is the reason that we were interested in covers
with low multiplicity.

2 Proof

Obviously, the intersection of two rectangles are also a (possibly empty) rectangle.
Similarly, the intersection of a finite number of rectangles is also a rectangle.

We should also remark, that if a matrix M of rank r can be given over some field
as a sum of ¢ all-1 rectangles, then ¢ > r, simply because then

¢
M = Z Mi,
i=1
where (the rank-1) matrix M; has entries 1, corresponding to the elements of rectangle
1, and 0’s everywhere else, for 1 = 1,2,...,t, and using the sub-additivity property of
the rank function.

Now, let us consider matrix M, and a cover of s rectangles with multiplicity d.
Let us correspond matrix M; to the rectangle ¢ as in the previous paragraph. Then
obviously the n x m matrix > ;_; M; has 0’s in the diagonal and non-0’s everywhere
else, and the largest entry is at most d.

For a K C {1,2,...,s} let Mk denote the rank-1 matrix, corresponding to the
intersection of the rectangles ¢, where ¢ € K. Let J denote the all-1 matrix and let
denote the unit-matrix.

Now we prove part (i) of the Theorem.

From the inclusion-exclusion formula:

J—-TI= > My — > Mg + -+ (=1)%! D My
KC{1,2,...,s},| K|=1 KC{1,2,...,8},| K|=2 KC{1,2,...,s},| K|=d
The right-hand-side of this formula is a sum of (i) +-e (2) rank-1 matrices; the
left-hand-side has rank n for n > 2 over the rationals, so (1) follows.
The proof of part (ii):
Let H denote the n X m matrix with 0’s in the diagonal and above, and 1’s under
the diagonal. Obviously, this is a matrix of rank n — 1. On the other hand:

H= > My — > My + -+ (=1)4! > Mg,
Kc{1,2,...,s},|K|=1 Kc{1,2,....s}, K|=2 Kc{1,2,...,s},|K|=d

so (2) follows again.O
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