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1. Abstract

We consider concurrent-write PRAMs with n processors of unlimited computational
power and infinite shared memory. (I.e. the number of processors is equal to the number of
input variables.) Several different models (COMMON, ARBITRARY, PRIORITY) have been
used for algorithm design in the literature; these models differ in their method of write-
conflict resolution. Their relative powers has recently been studied by several authors
[CDR], [FMW], [FRW1,2,3], [RSSW]. The significance of such problems is in studying the
barriers to information propagation under various constraints. We consider the COLLISION
model, where simultaneous attempt to write in the same cell results in a special mark in
the cell. We compare this model with other known models. Our main result is that
the COMMON and COLLISION models are incomparable. The harder part of this result is
based on an Q(logloglogn) lower bound on the COLLISION model for the following task:
write input z; in cell numbered z; (trivially solved in O(1) time on the COMMON model).
The proof uses combinatorial arguments including Turan’s Theorem for graphs and the
Sunflower Theorem of Erdés and Rado for set systems.

2. Introduction

The concurrent-read concurrent-write parallel random access machine (often denoted
CRCW PRAM) has proved a useful model in the design of highly parallel algorithms.
In this model, n processors Py, P,,..., P, are allowed synchronous read/write access to
a shared memory consisting of cells M;, M,,.... Each step of computation consists of
three phases. In the read phase, each processor reads from one cell; simultaneous reads
from the same cell are permitted. In the compute phase, each processor performs local
computation. For the purposes of lower bounds, we make no assumptions about the size
of the local memory of a processor, or about its instruction set; an arbitrary amount of
local computation is allowed. In the write phase, each processor may write into one cell;
simultaneous writes are also allowed, and write-conflicts are resolved by one of several
methods.

Many methods of write-conflict resolution appear in the literature, and algorithm
designers tend to use the variation that best allows their particular techniques to succeed.
We list some of these variations below.

*mailing address: Department of Computer Science, University of Chicago, 1100 E.
58th Street, CHICAGO IL 60637



e COMMON: Write conflicts are disallowed; if several processors want to write into the
same cell simultaneously, they must all be writing the same value. This model was

defined in [Ku]; examples of its use include [SV], [Ga], [KR].

e CoOLLISION: If two or more processors simultaneously attempt to write to a cell, a
special collision symbol appears in the cell. This is a natural generalization of the

Ethernet [Gr], first defined in [FRW2].

e ARBITRARY: If several processors simultaneously write different values, one of the
values written appears in the cell, but it is impossible to predict in advance which
value will appear. This model was defined in [V], and is used in [CV] and [Gaz].

e PRIORITY: If several processors simultaneously write different values, the value that
appears is the one written by the processor of lowest index. This model was defined
in [Gol, and is used in [TV].

We introduce a new model, which is similar to COLLISION in that write conflicts can
be detected, even if none of the values written can be recovered.

e TOLERANT: If several processors attempt to simultaneously write to a cell, the con-
tents of that cell do not change.

All of these models have the ability to compute the OR of n bits in O(1) steps; [CDR]
showed that a PRAM in which simultaneous writes are forbidden required Q(logn) time
to do this. The relationships between the various CRCW models are less clear. It is simple
to show that ARBITRARY is at least as powerful as COMMON, COLLISION, and TOLERANT,
and that PRIORITY is at least as powerful as ARBITRARY. [FRW1] and [FRW2] show
various separations between these models; in particular, the separation is ©(logn) between
CoOMMON or COLLISION and ARBITRARY, or between ARBITRARY and PRIORITY, if the
number of memory cells is restricted to O(n!~¢) for some € > 0. (Note that if the number
of memory cells is restricted, inputs must be initially distributed among the local memories
of each processor.)

[CSV] shows that if the instruction set of a processor is restricted (for example, mul-
tiplication is not permitted) and the size of shared memory is bounded by a polynomial
in n, then any of these PRAM models are depth-equivalent to unbounded fan-in circuits
modulo a polynomial blowup in hardware (processors and cells, or gates). Thus all circuit
lower bounds can be carried over. [BH] shows tight bounds on computing the parity of n
bits on all of these models. [LY] extends many of these results to the case where the input
is stored in a special read-only memory.

[Ku] showed that any one of these models could simulate any other in constant time
if the simulating machine was allowed n? processors. This is evidence that proving lower
bounds separating these machines (when the number of processors is held constant) can
be very difficult without assuming restrictions on instruction set or size of shared memory.
Furthermore, by “gathering variables”, these machines (without using simultaneous writes
or reads) can compute any function of the input variables in O(logn) steps.

The only separation result known that does not assume such restrictions is the lower
bound demonstrated in [FMW] of Q(log loglogn) for solving element distinctness (testing
whether n integers are distinct) on COMMON. This bound is improved in [RSSW] to
(+/lTogn). It is natural to conjecture a separation of ©(log n) between any of these models;
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log logn
steps of COMMON, if the size of shared memory on the COMMON machine is increased by
a multiplicative factor of n. This increase, of course, has no effect if the size of shared
memory is unbounded.

1
however, [FRW3] showed a surprising simulation of one step of PRIORITY by O (—M)

In this paper we contribute separation results in which no restrictions are made on the
size of shared memory or on the instruction sets of processors. We prove a lower bound
of Q(logloglogn) for a particular problem on the COLLISION model. This, when taken
in conjunction with the element distinctness result and a further reduction to another
problem, implies that the powers of COMMON and COLLISION are incomparable. That is,
there can exist no simulation of one step of one of these models by O(1) steps of the other.
This answers an open question posed in [FRW2]. In contrast, that paper showed that if
the size of shared memory is restricted to one cell, one step of COMMON could be simulated
by O(1) steps of COLLISION, while ©(logn) steps were required in the reverse direction.

We also separate COLLISION from TOLERANT, and ARBITRARY from COLLISION. Fi-
nally, we show that the powers of TOLERANT and COMMON are also incomparable. These
results show the usefulness of Ramsey-theoretic arguments in proving lower bounds on
highly parallel machines, and contribute towards our growing understanding of how pro-
cessors communicate in such a powerful environment.

3. The Main Lower Bound

The input to a PRAM will be an n-tuple of positive integers (z1, z2,...,Zy), where z;
is initially stored in the local memory of processor P;. (Since memory is unbounded, this is
equivalent to the situation where the input variables are stored in shared memory, one to a
cell.) The output of the PRAM will also be an n-tuple of positive integers (b1, ba, ..., bys),
and we can assume that b; is stored in the local memory of processor P;.

Our main result concerns a problem we call the PAIR problem. We call z; a pair of z;
if z; = zj. The PAIR problem asks each processor to discover a pair of their input value,
if one exists. More precisely, the output vector satisfies:

p. — 3o ifz; =z for some j #1
* 10, otherwise.

Theorem 1. The PAIR problem can be solved in O(1) steps on ARBITRARY.

Proof: At the first step, each processor P; writes ¢ into cell M,;. Each processor
then reads the cell it just wrote into. If a processor reads its own index, then it learns
nothing; but if it reads a value it did not write, then that value is the index of a pair of its
own value. The write is then repeated, except that processors that read their own index
do not participate. Finally, each processor P; that did not participate reads cell M,,. At
this point, every processor either knows a pair of its input variable, or knows that no pair
exists. m

Notice that the infinite memory is required in this algorithm. The algorithm cannot
work on COLLISION; after the first step, a processor may learn that its input variable has
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a pair, but will not know what the index of that pair is. The lower bound for element
distinctness on COMMON took advantage of the fact that, in that machine, a processor
cannot discover, after a write step, if any other processors wrote into the same cell. In
COLLISION, a processor can make that discovery, but it cannot know who attempted to
write to the same cell. Thus, intuitively, the PAIR problem is hard for COLLISION. The
following lower bound formalizes this idea; it is our main result.

Theorem 2. There exists an input on which COLLISION requires §2(logloglogn) steps to
solve the PAIR problem.

As a corollary to the two theorems above, we have an Q(logloglogn) separation
between COLLISION and ARBITRARY, and thus between COLLISION and PRIORITY. In the
remainder of this section we briefly outline the main ideas of the proof of Theorem 2.

Our lower bound proof starts by assuming a COLLISION PRAM that solves the PAIR
problem. We proceed to construct, for each step ¢, a set of “allowable” inputs such that
the machine cannot answer correctly after step ¢ for some allowable input. As long as there
exists an allowable input, we have a lower bound of ¢ steps.

In our allowable inputs, every input variable z; will be equal to exactly one other input
variable z;; in fact, the lower bound holds even if inputs are restricted to be of this form.
(This will be important in the next section.) The problem then reduces to determining
the (unique) pair of each input variable. However, in order to fully describe the set of
allowable inputs, we will require some additional sets, which are described below.

e A set U; of free variables. This set will be partitioned into sets {U;, Us,...} of equal
size. We refer to each one of these sets as a U-set. We denote the total number of
variables in U; as vy, and we denote the number of variables in any U-set as u;. In
any allowable input, the values of two variables in different U-sets must be different.
Since every variable has a pair, the members of each pair must be contained in the
same U-set.

Intuitively, the algorithm has succeeded, after t steps, of determining only that the
pair of any input variable z; in a U-set is some other variable in that U-set.

e An infinite set S; of integers. The allowable inputs will have values for the free
variables chosen from Sj;.

e A set M, of fized variables. Any variable that is not free will be fixed. A fixed
variable has the same value in any allowable input. It is set to some value that is
smaller than any value in S, and its pair (another fixed variable) remains the same
over all allowable inputs.

We can now state three inductive hypotheses that hold by construction.

1) The state of each processor up to and after step ¢, when we restrict attention to
allowable inputs, is a function of at most one free variable. For a given processor
P, this variable, if it exists, is the same over all allowable inputs. We say that the
processor knows that variable.

If this condition holds, and a U-set has at least four variables, then any processor
knows at most one of these, and so no processor can know the pair of any free variable.
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Because of condition 1), the choice of which cell processor P; reads at a given step
is also a function of the one free variable that P; knows. We call this the read access
function of P;. When we think of a read access function, we consider it as a function of
some variable z that can take on values from S;; to use that function, different processors
may substitute different free variables for z. Similarly, the write access function of P; is a
function of that one free variable.

2) For every step t' < t, a processor either does not write at step ¢’ for all allowable
inputs or always writes. Any read or write access function at step ' is either constant
or 1-1; any two such functions used before or at step t are either identical, or have
disjoint ranges.

Condition 1) ensures that a processor cannot “know” anything about the pair of the
variable it knows, apart from the fact that it is somewhere in the U-set of that variable.
Condition 3) will ensure that it can find very little information in memory, also.

3) Consider any write access function f used at step t' < ¢. Let V be the set of free vari-
ables used by processors at step ' as arguments to f. For any U-set, the intersection
of V and that U-set is either empty, contains only one variable, or is the whole U-set.

Intuitively, f could be used to convey information about variables in the intersection.
But as a result of condition 3), f conveys either information about only one variable, or it
conveys no information at all, since two processors will write to every place accessed.

We can slightly modify the CoLLISION PRAM, without decreasing its power. We
allow the processors to read t — 1 cells at step t, simultaneously. But those cells, if they
were written into at all, must have been written into at steps 1,2,...,t — 1 respectively.
Furthermore, we disallow overwriting — that is, a cell may be written into only once. One
can prove easily that for infinite memory, this does not decrease the power of the PRAM.

Lemma 3. If f is a function with infinite domain, then there exists an infinite subdomain
such that f is either 1-1 or constant when restricted to the subdomain. If f, g are two 1-1
functions with infinite common domain, then there exists an infinite common subdomain
such that f and g are either identical or have disjoint ranges on this subdomain. m

This lemma was used in [FMW] to restrict the manner in which processors may
communicate with each other. We apply this lemma to all pairs of read and write access
functions used before or during step ¢ + 1, thereby further reducing S¢41.

Now let us consider the information learned when some processor P knowing z ; uses
it in some read access function f at step ¢+ 1 to read a cell that was written (if at all) at
step t'. If P reads according to f, then P can only read values written by processors that
wrote using f at step ¢'. First, we consider the case where f is 1-1. Let V be the set of
variables substituted into f at that step by such processors, and use inductive condition 3).

If the intersection of V with the U-set that contains z; is empty, then P reads 0 (the
initial value in that cell). If it is the whole U-set, then some processor @) wrote using z;
at the same step. But the pair of z; is in the set V, and so no matter what that pair is,
some processor used it to substitute into f. Thus two processors wrote into the cell read
by P, and P reads a collision symbol.

If the intersection is one element (say z;), then P could learn something about z;.
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If f is constant, then the only way that P can gain information from the read is if
only one processor Q wrote into the cell specified at time #'. In this case, P (knowing z i)
can learn something about the variable z; known by Q.

Let us construct a graph whose nodes are the free variables; there is an edge between
z; and z; if a processor knowing z; learns something about z; (in the sense described
above). Each processor can contribute at most ¢ edges to this graph, since it reads at most
t cells at step t + 1. Thus by Turdn’s theorem [B], there exists an independent set of size

E—i'%ﬁ = %:Lt We throw away everything but the independent set. (When we throw away
variables during the construction, we actually save them until the end of the step under
consideration, and then add them to M,, suitably paired off.)

We do not want any one free variable to be known by too many processors. So if we
throw away those free variables which are known by more the twice the average number
of processors, we are left with at least 6—"1':7 free variables, each known by at most gnit
Processors.

If we throw away all U-sets that contain less than 7t variables, we are left with at

12nt
2
least E’:—“—R U-sets. We then throw away variables within those sets until they all have size
UV
12nt"

This brings us to taking care of condition 3). For any write access function used at
step t + 1, let V be the set of variables that processors substitute into that write access
function. We call such a set V an f-set. Condition 3) does not hold yet for such sets V; we
must partition each U-set into many new U-sets such that it does hold.

Lemma 4. Given any number of f-sets within a U-set of size m, with the property that
any element of the U-set is in at most { f-sets, we can partition the U-set into new U-sets
of size mT7 (we may have to throw away (E!)m% elements) such that the intersection of
any f-set with a new U-set is empty, has one element, or is the whole new U-set.

The proof uses a theorem of Erdés and Rado [ER] which states that a family of at
least £'k**! (not necessarily different) sets of size at most £, there is a sunflower formed by
k sets. The details are omitted here. =

We define U;4; by applying this lemma to each U-set from U, (after all the throwing
out of variables) and partitioning each U-set into many new U-sets. We can see, that if
t < ilog loglogn, then, for large enough n, the waste from partitioning a U-set does not
amount to more than half the size of the original U-set; the waste is thrown away. We
suitable pair off and fix the values of discarded variables, and define M.

Let us denote by £; the maximum number of processors which may know a free variable
after step t. The resulting recurrence equations are:

6n?t
‘et+1_ 2
Vi
UV 2%
t
w2 ()
3
v
Vi1 = :

288n22 | Lt+l
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By easy estimations we can obtain inequalities of the form:

0, < 22°

> n
Ve = 220(1)

1
ug > n22°0

Since we require only that up > 4 for a lower bound of T steps, we obtain a lower
bound of T' = Q(logloglogn). =

We note that it is simple to prove finite version of Lemmas 3 and 4 using the above
Erdés-Rado Theorem. We get the following:

Theorem 5. There exists a polynomial p(n) such that COLLISION requires §2(log loglogn)
steps to solve the PAIR problem even if inputs are restricted to numbers with at most p(n)
bits. m

This implies that if the size of shared memory is restricted to 27(")  ARBITRARY is
still more powerful than COLLISION. As for upper bounds for the PAIR problem, the best
known algorithm simply simulates the O(1) ARBITRARY algorithm. Using the simulation

from [FRW3], the PAIR problem can be solved in O(Tg’lso—'g'—;) steps on COLLISION.

4. Further Results

Element distinctness can easily be reduced to the PAIR problem, and so the PAIR
problem is hard for both COMMON and COLLISION. COLLISION can solve element distinct-
ness in O(1) steps, but COMMON cannot. We were unable to find a function or a decision
problem that is easy for COMMON but hard for COLLISION. However, we can specify a task
which COMMON can do quickly, but COLLISION cannot. We call this Writing Task 1, and
it simply requires that the value of z; must appear in cell M, where z; is positive integer
for all i. This can be done in one step on COMMON, but is hard for COLLISION. This does
not imply that there exists a function or decision problem hard for COLLISION and easy
for COMMON. It does show, however, that a step-by-step simulation (as all simulations so
far have been) is impossible.

Theorem 6. If a COLLISION PRAM can solve Writing Task in T steps, then there exists
an infinite set R of positive integers such that a COLLISION PRAM can solve the PAIR
problem in T + 2 steps for inputs restricted so that values are chosen from R and every
variable has a unique pair.

Corollary: Writing Task requires Q(logloglogn) steps on COLLISION.

The proof of this theorem uses Ramsey’s theorem [R] to aid in the reduction. Suppose
we are given a COLLISION PRAM that solves Writing Task in T steps. Without loss of
generality, we may assume the following: in each write phase, each processor P, instead
of writing a word w to a cell ¢, writes its entire history (its name, the value of its input
variable, and the contents of every shared memory cell it has read).
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This modification does not decrease the power of the COLLISION PRAM, since if a
processor Q reads this cell ¢ then it can compute the word w, simply by simulating the
computation of some other processors (processor P, and those processors whose history
was read by P, and so on). Note that we cannot ensure this on COMMON.

We define the communication pattern of the PRAM on a given input to be the n x T
matrix A, where

(Pi,t) if P; read a cell at step j that was written by Py at step ¢,
Aij= 1 * if P; read a collision symbol at step j,
0 if P; read an empty cell at step j

We say that a processor P directly learns variable z; if either P gets z; as input (in
which case P = P;), or if P has read a cell that was last written into by a processor that
directly learned z;.

It is easy to see that the history of each processors depend only on the communication
pattern and on the values of the directly learned variables. For a COLLISION PRAM which
solves a problem in T steps, there are only a finite number of different communication
patterns. The communication patterns can be used to colour certain sets of integers in
order to get an infinite input set by Ramsey’s Theorem [R], such that for these inputs if a
processor P writes z; to cell M,,, then P directly learned z; or a pair of z;. Then P will
know z;’s index as well, and the PRAM can solve the PAIR problem in two more steps,
as we have seen in the proof of Theorem 1. The details are omitted. m

This proves the incomparability of COMMON and COLLISION. It is easy to show that
one step of TOLERANT can be simulated by O(1) steps of COLLISION. Element distinctness
can be solved quickly on TOLERANT but not on COMMON; we can demonstrate another
task that can be solved quickly on COMMON but not on TOLERANT. This simply requires
that a collision symbol be written to cell M,,, for all ;. This can be done in O(1) steps on
COLLISION, but even if we include the collision symbol * in the alphabet of TOLERANT, it
cannot be done quickly. The details are omitted here.

5. Further Work and Open Problems

We believe that all lower bounds of the form Q(logloglogn) described in this paper
can be improved by the use of techniques from [MW] and [RSSW] to permit processors to
learn more than one variable. However, this requires the use of stronger Ramsey theory,
and will no doubt be complicated.

It is still possible that any function computable by COMMON in t steps can be com-
puted by COLLISION in O(t) steps, and vice versa. We have only shown that settling this
question affirmatively would require something like a characterization of the functions thus
computable, and not merely a step-by-step simulation. It would also be nice to be able to
separate these models with 0/1 inputs, instead of unbounded inputs.

Finally we note that one step of PRIORITY can be simulated by O (%:lgog—n) steps of

COMMON or COLLISION. The simulation fails to work on TOLERANT. Can we do better
than the trivial O(logn) simulation?
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