Harmonic Analysis, Real Approximation, and the Communication Complexity of Boolean Functions

Vince Grolmusz *
June 14, 1996

Abstract

The 2-party communication complexity of Boolean function f is known to be at least $\log \operatorname{rank}(M_f)$, i.e. the logarithm of the rank of the communication matrix of f [19]. $Lov\acute{asz}$ and Saks [17] asked whether the communication complexity of f can be bounded from above by $(\log \operatorname{rank}(M_f))^c$, for some constant c. The question was answered affirmatively for a special class of functions f in [17], and Nisan and Wigderson proved nice results related to this problem [20], but for arbitrary f, it remained a difficult open problem.

We prove here an analogous poly-logarithmic upper bound in the stronger multi-party communication model of *Chandra*, *Furst* and Lipton [6], which, instead of the rank of the communication matrix, depends on the L₁ norm of function f, for arbitrary Boolean function f.

1 Introduction

1.1 Communication Complexity

In the 2-party communication game, introduced by Yao [23], two players, P_1 and P_2 attempt to compute a Boolean function $f(x_1, x_2) : \{0, 1\}^n \to \{0, 1\}^n$

^{*}Department of Computer Science, Eötvös University, Budapest, Address: Múzeum krt.6-8, H-1088 Budapest, HUNGARY; E-mail: grolmusz@cs.elte.hu

 $\{0,1\}$, where $x_1, x_2 \in \{0,1\}^{n'}$, 2n' = n. Player P_1 knows the value of x_2 , P_2 knows the value of x_1 , but P_i does not know the value of x_i , for i = 1, 2. The minimum number of bits that must be communicated by the players to compute f is the communication complexity of f, denoted by $\kappa(f)$.

This model has been widely studied and was applied to prove time-area trade-offs for VLSI circuits, and has other numerous applications and remarkable properties (e.g. [1],[10], [11], [17], [19], or see [16] for a survey).

An important problem in complexity theory is giving lower– and upper estimations for the communication complexity of function f. The following general lower bound to $\kappa(f)$ was introduced in [19]:

$$\kappa(f) \ge \log \operatorname{rank}(M_f),$$

where M_f is a binary $2^{n'} \times 2^{n'}$ matrix, containing the value of $f(x_1, x_2)$ in the intersection of the row of x_1 and the column of x_2 .

 $Lov\acute{a}sz$ and Saks asked in [17] whether there existed an integer c such that for all Boolean function f

$$\kappa(f) \le (\log \operatorname{rank}(M_f))^c.$$
(1)

In [17], (1) was proved for a special class of functions. Nisan and Wigderson [20] also have nice results concerning this inequality. However, for general f, (1) is open, and seems to be a difficult problem.

The main contribution of this paper is an analogous poly-logarithmic upper bound for arbitrary f, in the stronger, k-party communication model of [6]:

$$C^{(k)}(f) = O\left(\left(\log\left(nL_1(f)\right)\right)^3\right),$$

for $k = c \log(nL_1(f))$ players, where $C^{(k)}(f)$ is the k-party communication complexity of f, and $L_1(f)$ is the L_1 spectral norm of Boolean function f (both are defined below).

Remark. Recently, Chi-Jen Lu [18] observed, that a slight modification in our ODDCOUNT protocol (Lemma 11), yields an $O((\log(nL_1(f)))^2)$ upper bound to $C^{(k)}(f)$.

1.2 Multi-Party Games

The multi-party communication game, defined by Chandra, Furst and Lipton [6], is a generalization of the 2-party case. In this game, k players:

 $P_1, P_2..., P_k$ intend to compute a Boolean function $f(x_1, x_2, ..., x_n) : \{0, 1\}^n \to \{0, 1\}$. On set $S = \{x_1, x_2, ..., x_n\}$ of variables there is a fixed partition A of k classes $A_1, A_2, ..., A_k$, and player P_i knows every variable, except those in A_i , for i = 1, 2, ..., k. The players have unlimited computational power, and they communicate with the help of a blackboard, viewed by all players. The goal is to compute $f(x_1, x_2, ..., x_n)$, such that at the end of the computation, every player knows this value. The cost of the computation is the number of bits written on the blackboard for the given $x = (x_1, x_2, ..., x_n)$ and $A = (A_1, A_2, ..., A_k)$. The cost of a multi-party protocol is the maximum number of bits communicated for any x from $\{0,1\}^n$ and the given A. The k-party communication complexity, $C_A^{(k)}(f)$, of a function f, with respect to partition A, is the minimum of costs of those k-party protocols which compute f. The k-party symmetric communication complexity of f is defined as

$$C^{(k)}(f) = \max_{A} C_A^{(k)}(f),$$

where the maximum is taken over all k-partitions of set $\{x_1, x_2, ..., x_n\}$.

This model was used by *Babai*, *Nisan* and *Szegedy* [3] for constructing pseudorandom generators. *Håstad* and *Goldmann* [13], and we [7], [12] have used it for proving lower bounds to the size of hard-to-handle circuit classes.

For a general upper bound both for two and more players, let us suppose that A_1 is one of the smallest classes of $A_1, A_2, ..., A_k$. Then P_1 can compute any Boolean function of S with $|A_1| + 1$ bits of communication: P_2 writes down the $|A_1|$ bits of A_1 on the blackboard, P_1 reads it, and computes and announces the value $f(x_1, x_2, ..., x_n) \in \{0, 1\}$. So

$$C^{(k)}(f) \le \left| \frac{n}{k} \right| + 1. \tag{2}$$

For certain functions, much better upper bounds were proven in [6], [9], and in [7]. However, by the author's knowledge, before the present paper, no general upper bounds were known, other than (2).

1.3 Spectral Norms

There is a vast literature on representing the Boolean functions by polynomials above some field or ring (see, e.g. [2], [5], [22], [15], [14], or [4] for a survey). One reason for this may be that the polynomials offer a more

developed machinery than the "pure" Boolean functions. One tool in this machinery is the Fourier-expansion of Boolean functions [15], [5]:

Let us represent Boolean function f as a function $f: \{-1,1\}^n \to \{-1,1\}$ where -1 stays for "true".

The set of all real valued functions over $\{-1,1\}^n$ forms a 2^n dimensional vector-space over the reals with an inner product:

$$\langle g, h \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} g(x)h(x).$$

Let us define for $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \{0, 1\}^n$

$$X^{\alpha} = \prod_{i=1}^{n} x_i^{\alpha_i}.$$

The monomials X^{α} for $\alpha \in \{0,1\}^n$ form an *orthonormal basis* in this 2^n -dimensional vector space; consequently, any function $h: \{-1,1\}^n \to \mathbf{R}$ can be uniquely expressed as

$$h(x_1, x_2, ..., x_n) = \sum_{\alpha \in \{0,1\}^n} a_{\alpha} X^{\alpha}$$
 (3)

The right-hand-side of (3) is called the Fourier-expansion of h, and numbers a_{α} for $\alpha \in \{0,1\}^n$ are called the spectral (or Fourier-) coefficients of h. The L_1 norm of h is:

$$L_1(h) = \sum_{\alpha \in \{0,1\}^n} |a_\alpha|$$

The L_2 norm:

$$\mathrm{L}_2(h) = \Big(\sum_{lpha \in \{0,1\}^n} a_lpha^2\Big)^{rac{1}{2}} = \langle h,h
angle^{rac{1}{2}}.$$

1.3.1 Examples

• The PARITY function in this setting is $x_1x_2...x_n$, its L₁ norm is 1, while its degree is n.

• It is easy to verify that

$$\bigvee_{i=1}^{n} x_{i} = -\frac{1}{2^{n-1}} \left(2^{n-1} - \prod_{i=1}^{n} (x_{i} + 1) \right) =$$

$$= -\frac{1}{2^{n-1}} \left(2^{n-1} - (1 + x_{1} + x_{2} + \dots + x_{n} + x_{1}x_{2} + \dots + x_{1}x_{2} \dots x_{n}) \right);$$
and
$$\bigwedge_{i=1}^{n} x_{i} = \frac{1}{2^{n-1}} \left(2^{n-1} - \prod_{i=1}^{n} (1 - x_{i}) \right) =$$

$$= \frac{1}{2^{n-1}} \left(2^{n-1} - (1 - x_{1} - x_{2} - \dots - x_{n} + x_{1}x_{2} + \dots + (-1)^{n}x_{1}x_{2} \dots x_{n}) \right).$$

Let us observe that both the n-fan-in OR and AND have exponentially many non-zero Fourier-coefficients, their degree is n, while their L_1 norms are less than three.

• The inner product mod 2 function (IP) is defined as follows:

$$IP(x_1, x_2, ..., x_{2n}) = \prod_{i=1}^{n} (x_{2i-1} \wedge x_{2i}).$$

It is easy to verify that $L_1(IP)$ is the highest possible for any 2n variable Boolean functions: 2^n .

Bruck and Smolensky [5] established a relation between the L₁ norm and the computability of f by polynomial threshold functions. A generalization of one of their results plays a main role (Lemma 8) in the present work.

2 Main Results

At first we present a general theorem, which implies several corollaries with more natural setting. Theorem 1 shows, that if a Boolean function can be approximated by a real function with small error, then there exists a k-party protocol which computes the Boolean function, and the number of communicated bits in this protocol depends only on the L_1 norm of the approximating real function.

Theorem 1 Let f be a Boolean function: $f: \{-1,1\}^n \to \{-1,1\}$, and g be a real function $g: \{-1,1\}^n \to \mathbf{R}$. Suppose that for all $x \in \{-1,1\}^n$,

$$|g(x) - f(x)| < \frac{1}{5}.$$

Then the k-party symmetric communication complexity of f is

$$O\left(k^2\log(n\mathcal{L}_1(g))\left\lceil\frac{n\mathcal{L}_1^2(g)}{2^k}\right\rceil\right).$$

In particular, choosing g = f in Theorem 1:

Corollary 2 Let f be a Boolean function: $f: \{-1,1\}^n \to \{-1,1\}$, Then the k-party symmetric communication complexity of f is

$$O\left(k^2\log(n\mathcal{L}_1(f))\left\lceil\frac{n\mathcal{L}_1^2(f)}{2^k}\right\rceil\right).$$

Or, setting k large enough:

Corollary 3 Let f be an arbitrary Boolean function of n variables. Let $k = c \log(nL_1(f))$ with a c > 0. Then

$$C^{(k)}(f) = O\left(\log^3\left(nL_1(f)\right)\right).$$

In other words, if the L₁ spectral norm of f is bounded by a polynomial in n, then the symmetric k-party communication complexity of f is at most $O(\log^3 n)$, with $k = c \log n$.

Let f and g be two functions, such that $|f-g| < \frac{1}{5}$. Then their L_1 norms may differ even exponentially: e.g. $f \equiv 0$, g' is a Boolean function of exponential L_1 norm, then $g = \frac{1}{6}g'$ has also exponential L_1 norm, while $|f-g| \leq \frac{1}{6}$. So the following corollary of Theorem 1 may yield a much better bound than Corollary 3:

Corollary 4 Let

$$\gamma = \inf \left\{ \mathcal{L}_1(g) \middle| g : \{-1,1\}^n \to \mathbf{R}, \text{ and } \forall x \in \{-1,1\}^n : \middle| g(x) - f(x) \middle| < \frac{1}{5} \right\}.$$

Then

$$C^{(k)}(f) = O\left(k^2 \log(n\gamma) \left\lceil \frac{n\gamma^2}{2^k} \right\rceil\right).$$

Suppose that f is a Boolean function of large (say, exponential) L_1 norm in n. Our Corollary 3 can guarantee only a communication protocol with too many communicated bits: the trivial $\lfloor \frac{n}{k} \rfloor + 1$ protocol may be better. However, if the Fourier-coefficients of f are distributed "unevenly enough", i.e. they can be divided into two parts: one with small L_1 , the other with small L_2 norms, then we can do much better:

Theorem 5 Let

$$f(x) = \sum_{\alpha \in \{0,1\}^n} a_{\alpha} X^{\alpha},$$

and let $S \subset \{0,1\}^n$ such that

$$\sum_{\alpha \in S} a_{\alpha}^2 \le \varepsilon,$$

for some $\varepsilon < \frac{1}{2500}$. Let

$$g(x) = \sum_{\alpha \in \{0,1\}^n - S} a_{\alpha} X^{\alpha}.$$

Then for all $k \geq 2$ and for all k-partitions of the inputs, there exists a k-party protocol with

$$O\left(k^2 \log\left(n \mathcal{L}_1(g)\right) \left\lceil \frac{n \mathcal{L}_1^2(g)}{2^k} \right\rceil\right)$$

bits of communication, and this protocol computes f correctly on at least $(1-25\varepsilon) > \frac{99}{100}$ fraction of the inputs.

The following results of [8] show the power of our upper bounds in Theorems 1 and 5, proving that almost all Boolean function has very high multi-party communication complexity:

Theorem 6 [8] Let f be a uniformly chosen random member of set

$$\{f|f:\{-1,1\}^n\to\{-1,1\}\}.$$

Then the probability, that for some A k-equipartition of $X = \{x_1, x_2, ..., x_n\}$, there exists a k-party protocol, which computes f with communication of at $most \lfloor \frac{n}{k} \rfloor - \log n$ bits, is less than

$$2^{-2^{\Omega(n)}}.$$

The communication complexity remains high even if we compute f on most of the inputs:

Theorem 7 Let f be a uniformly chosen random member of set

$$\{f|f:\{-1,1\}^n\to\{-1,1\}\}.$$

Then the probability, that for some A k-equipartition of $X = \{x_1, x_2, ..., x_n\}$, there exists a k-party protocol, which correctly computes f on a fraction of at least $\frac{1}{2} + \varepsilon$ of inputs, with communication of at most $\lfloor \frac{n}{k} \rfloor - \log \frac{n}{\varepsilon}$ bits, is less than

$$2^{-2^{\Omega(n)}}$$
.

Comparing Theorem 1 with Theorem 6, and Theorem 5 with Theorem 7, we have got that for almost all Boolean function f:

- f has exponential L₁-norm,
- If f is approximated by a real function g with error less than 1/5, then the L_1 norm of g is exponential in n,
- the Fourier-coefficients of f are "evenly distributed": they cannot be divided into two sets, one with subexponential L_1 norm, the other with a small L_2 norm.

3 THE PROOF OF THEOREM 1.

The following lemma is a generalization of a lemma of Bruck and Smolen-sky [5].

Lemma 8 Let $U \subset \{-1,1\}^n$ such that $|U| \geq (1-\frac{1}{100})2^n$. Let $g: \{-1,1\}^n \to \mathbb{R}$. Suppose that for all $x \in U$, $\frac{4}{5} < |g(x)| < \frac{6}{5}$ is satisfied. Then there exists polynomial $G_0(x)$ with integer coefficients and with L_1 norm

$$L_1(G_0) \le 400nL_1^2(g)$$

such that

$$\operatorname{sgn}(G_0(x)) = \operatorname{sgn}(g(x))$$

for all $x \in U$.

Proof. The Fourier-expansion of g:

$$g(x) = \sum_{\alpha \in \{0,1\}^n} a_{\alpha} X^{\alpha}$$

where a_{α} , for $\alpha \in \{0,1\}^n$, are the Fourier-coefficients of g. Then by definition

$$L_1(g) = \sum_{\alpha \in \{0,1\}^n} |a_{\alpha}|.$$

and

$$L_2^2(g) = \langle g, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} g^2(x) = \sum_{\alpha \in \{0,1\}^n} a_{\alpha}^2,$$

using the Parseval-identity.

Since $|g(x)| \ge \frac{4}{5}$ for $x \in U$, and $|U| \ge (1 - \frac{1}{100})2^n$,

$$L_2(g) \ge \left(1 - \frac{1}{100}\right) \frac{16}{25}.$$

Our next step is giving a lower bound to the L_1 norm of g.

(i) Suppose that there exists an α : $|a_{\alpha}| > \frac{1}{2}$. If $\operatorname{sgn}(X^{\alpha}) = \operatorname{sgn}(g(x))$ for all $x \in U$, then we are done, $G_0(x) = X^{\alpha}$ suffices. Otherwise, for some $x \in U$, $\operatorname{sgn}(X^{\alpha}) \neq \operatorname{sgn}(g(x))$. Then the other terms of g must compensate for X^{α} , so the sum of the absolute values of their coefficients should be greater than $\frac{4}{5}$. So

$$L_1(g) \ge \frac{4}{5} + |a_{\alpha}| \ge \frac{13}{10}.$$

(ii) Otherwise, if all $|a_{\alpha}| \leq \frac{1}{2}$, then

$$\left(1 - \frac{1}{100}\right) \frac{16}{25} \le \sum_{\alpha \in \{0,1\}^n} a_{\alpha}^2 \le \frac{1}{2} \sum_{\alpha \in \{0,1\}^n} |a_{\alpha}|,$$

 \mathbf{SO}

$$\left(1 - \frac{1}{100}\right) \frac{32}{25} \le \sum_{\alpha \in \{0,1\}^n} |a_{\alpha}| = L_1(g).$$

Consequently, either we have found a suitable $G_0(x)$, or we have concluded that

$$L_1(g) \ge \left(1 - \frac{1}{100}\right) \frac{32}{25} \ge \frac{127}{100}.$$
 (4)

Let us define random monomials Z_i as follows:

$$Z_i = \operatorname{sgn}(a_{\alpha})X^{\alpha}$$
 with probability $\frac{|a_{\alpha}|}{\operatorname{L}_1(g)}$.

Let random polynomial G(x) be defined as the sum of $N = \lfloor 400nL_1^2(g) \rfloor$ monomials Z_i :

$$G(x) = \sum_{i=1}^{N} Z_i.$$

Computing the expectation of Z_i :

$$E(Z_i(x)) = \sum_{\alpha \in \{0,1\}^n} \frac{|a_\alpha|}{L_1(g)} \operatorname{sgn}(a_\alpha) X^\alpha = \frac{g(x)}{L_1(g)},$$

where we used the fact that sgn(v)|v| = v.

The expectation of G(x)

$$E(G(x)) = \frac{Ng(x)}{L_1(g)}.$$
 (5)

The variance of Z_i :

$$\operatorname{Var}(Z_i(x)) = \operatorname{E}(Z_i^2) - \operatorname{E}^2(Z_i) = 1 - \frac{g^2(x)}{\operatorname{L}_1^2(g)}.$$

The variance of G(x):

$$\operatorname{Var}(G(x)) = N\left(1 - \frac{g^2(x)}{\operatorname{L}_1^2(g)}\right).$$

Since $|g(x)| \leq \frac{6}{5}$, and because of (4):

$$\frac{g^2(x)}{L_1^2(g)} \le \left(\frac{120}{127}\right)^2 \le \frac{9}{10},$$

so

$$\frac{N}{10} \le Var(G(x)) \le N$$

or

$$\sqrt{\frac{N}{10}} \le D(G(x)) \le \sqrt{N},\tag{6}$$

where $D(G(x)) = \sqrt{Var(G(x))}$, the standard deviation of G(x).

From (5), the sign of E(G(x)) is the same as the sign of g(x). Consequently,

$$\Pr\left(\operatorname{sgn}(G(x)) \neq \operatorname{sgn}(g(x)) = \right.$$

$$= \Pr\left(\operatorname{sgn}(G(x)) \neq \operatorname{sgn}(\operatorname{E}(G(x)))\right) \leq$$

$$\leq \Pr\left(|G(x) - \operatorname{E}(G(x))| \geq \frac{N|g(x)|}{\operatorname{L}_1(g)}\right) \leq$$

$$\leq \Pr\left(|G(x) - \operatorname{E}(G(x))| \geq \frac{4N}{5\operatorname{L}_1(g)}\right).$$

From the Bernstein-inequality (see [21]), (or from the Central Limit Theorem), with D = D(G(x)), we have got:

$$\Pr(|G(x) - E(G(x))| \ge \mu D) \le 2 \exp\left(-\frac{\mu^2}{2(1 + \frac{\mu}{D})^2}\right),$$
 (7)

where $0 < \mu < \frac{D}{2}$.

For $\mu = 3\sqrt{n}$, $N = \lfloor 400nL_1^2(g) \rfloor$ we got that the probability in (7) is less than e^{-n} . On the other hand,

$$\mu D \le \frac{4N}{5L_1(g)},$$

so

$$\Pr\left(\operatorname{sgn}(G(x)) \neq \operatorname{sgn}(g(x))\right) < e^{-n}.$$

Consequently,

$$\begin{split} & \Pr\left(\exists x \in U : \operatorname{sgn}(G(x)) \neq \operatorname{sgn}(g(x))\right) \leq \\ \leq & \sum_{x \in U} \Pr\left(\operatorname{sgn}(G(x)) \neq \operatorname{sgn}(g(x))\right) \leq |U| e^{-n} \leq 2^n e^{-n} < 1, \end{split}$$

and since this probability is less than one, there exists a polynomial $G_0(x)$ for which $\operatorname{sgn}(G_0(x)) = \operatorname{sgn}(g(x))$ for all $x \in U$. The coefficients of this G_0 are integers, and its L_1 -norm is at most N. \square

Proof of Theorem 1. Function g satisfies the requirements of Lemma 8, for $U = \{-1, 1\}^n$. Then there exists a polynomial $G_0(x)$ with integer coefficients and an L_1 norm of at most $400nL_1^2$, such that

$$\operatorname{sgn}(g(x)) = \operatorname{sgn}(G_0(x))$$

for all $x \in \{-1,1\}^n$. Since $\operatorname{sgn}(g(x)) = f(x)$, we have got that $\operatorname{sgn}(G_0(x)) = f(x)$, for all $x \in \{-1,1\}^n$. And, by the following Theorem 9, $G_0(x)$ has the needed symmetric k-party communication complexity.

Theorem 9 Let

$$G(x) = \sum_{i=1}^{N} Z_i,$$

where $Z_i = X^{\alpha}$ or $Z_i = -X^{\alpha}$, for some $\alpha \in \{0,1\}^n$, and for $x \in \{-1,1\}^n$. Then the symmetric k-party communication complexity of G is

$$O\bigg(k^2\log(nN)\bigg\lceil\frac{nN^2}{2^k}\bigg\rceil\bigg).$$

Proof of Theorem 9 Let $G_1(x)$ be the sum of Z_i 's with positive sign, and let $G_2(x)$ be the sum of $(-Z_i)$'s, where Z_i has a negative sign. So:

$$G(x) = G_1(x) - G_2(x),$$

and G_1 has N_1 terms, G_2 has N_2 terms, $N_1 + N_2 = N$.

Let us observe that $G_j(x)$ is the sum of N_j terms of form

$$X^{\alpha} = \prod_{i=1}^{n} x_i^{\alpha_i} = \prod_{i:\alpha_i=1} x_i$$

for j = 1, 2. Clearly,

$$X^{\alpha} = \begin{cases} -1, & \text{if } |\{i : x_i = -1, \alpha_i = 1\}| \text{ is odd} \\ 1 & \text{otherwise} \end{cases}$$

For j = 1, 2, let b_j denote the number (counting the possible multiplicities) of those terms X^{α} in $G_j(x)$, for which $|\{i : x_i = -1, \alpha_i = 1\}|$ is odd. Then $G_j(x) = (N_j - b_j) - b_j = N_j - 2b_j$, so:

$$G(x) = G_1(x) - G_2(x) = N_1 - N_2 + 2b_2 - 2b_1.$$
(8)

Let us denote

$$y_i = \begin{cases} 1, & \text{if } x_i = -1 \\ 0, & \text{if } x_i = 1 \end{cases}$$

then

$$X^{\alpha} = -1 \iff \sum_{i=1}^{n} y_i \alpha_i = 1 \mod 2.$$

Let us form a matrix $M^{(j)}$ with N_j rows and n columns, for j=1,2. Each row is corresponded to a term X^{α} in $G_j(x)$, and the i^{th} entry of that row is $y_i\alpha_i$.

Obviously, the number of those rows of $M^{(j)}$ which have odd sum is equal to b_j . Suppose now that we are given polynomial G(x), players $P_1, P_2, ..., P_k$ and

a k-partition $A = (A_1, A_2, ..., A_k)$ of the set $\{x_1, x_2, ..., x_n\}$. We assume that player P_ℓ knows function G(x), partition A, functions $G_1(x)$, $G_2(x)$, and the values of all variables, except those in A_ℓ , for $\ell = 1, 2, ..., k$. Then the players, without any communication can privately compute matrices $M^{(1)}$ and $M^{(2)}$, and exactly those entries of these matrices will be not known for player P_ℓ which were corresponded to variables in class A_ℓ . The set of these entries will be called B_ℓ , for $\ell = 1, 2, ..., k$. The following lemma shows a protocol by which the players can first compute b_1 and then b_2 , and consequently, G(x), by equation (8).

Lemma 10 Let $M \in \{0,1\}^{m \times n}$, $M = \{m_{ij}\}$, and let $B = \{B_1, B_2, ..., B_k\}$ a partition of the set $\{m_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$, such that player P_{ℓ} knows every m_{ij} except those in B_{ℓ} , for $\ell = 1, 2, ..., k$. Then there exists a k-party protocol which computes the number of the rows with odd sum in M with communicating

$$O\left(k^2\log m\left\lceil\frac{m}{2^k}\right\rceil\right)$$

bits.

Proof. First, the players compute a matrix $Q \in \{0,1\}^{m \times k}$ from M, with no communication: for each row of M a row of Q is corresponded; the first element of row j of Q is the mod 2 sum of those entries of the j^{th} row of M which are the elements of B_1 at the same time. Analogously, the i^{th} element of row j of Q is the mod 2 sum of those entries of the j^{th} row of M which are the elements of B_i at the same time.

Clearly, the number of rows with odd sum in M and in Q is the same. Moreover, player P_{ℓ} knows every column of matrix Q, except column ℓ , for $\ell = 1, 2, ..., k$.

With an additional assumption, Lemma 11 gives a protocol with $O(k^2 \log m)$ communication. This protocol is implicit in [2], in [9], and is used in a more general form in [7].

Lemma 11 Let $\beta \in \{0,1\}^k$. Suppose it is known to each player that β does not occur as a row of Q. Then there exists a k-party protocol which computes the number of the odd rows with a communication of $O(k^2 \log m)$ bits.

Proof of Lemma 11 Without restricting the generality we may suppose that β is the all-1 vector of length k.

Let $ODD(\gamma_1\gamma_2...\gamma_\ell)$ and $EVEN(\gamma_1\gamma_2...\gamma_\ell)$ denote the number of those rows of Q which have odd (respectively, even) sums, and they begin with $\gamma_1\gamma_2...\gamma_\ell$, $\ell \leq k$, $\gamma_i \in \{0,1\}$.

For example, P_1 does not know the first column of Q, but he can communicate ODD(0) + EVEN(1) if P_1 counts those rows which has odd sum in its second through kth position. Similarly P_2 can communicate ODD(10) + EVEN(11) if he counts those rows which begins with 1, and the sum of their first, 3rd, 4th,...,kth elements is odd.

This observation motivates the following protocol:

PROTOCOL ODDCOUNT

The goal: to compute b, the number of rows with odd sum in Q. Number b will be the sum of values u_i announced by player P_i , i = 1, 2, ..., k.

 P_1 announces $u_1 = \text{ODD}(0) + \text{EVEN}(1)$.

remark:
$$b = u_1 + \text{ODD}(1) - \text{EVEN}(1)$$
.

 P_2 announces $u_2 = \text{ODD}(10) + \text{EVEN}(11) - \text{EVEN}(10) - \text{ODD}(11)$.

remark: $b = u_1 + u_2 - 2EVEN(11) + 2ODD(11)$

 P_3 announces $u_3 = 2\text{ODD}(110) + 2\text{EVEN}(111) - 2\text{EVEN}(110) - 2\text{ODD}(111)$.

remark:
$$b = u_1 + u_2 + u_3 - 4EVEN(111) + 3ODD(111)$$

.

 P_i announces $u_i = 2^{i-2}\text{ODD}(1...10) + 2^{i-2}\text{EVEN}(1...11) - 2^{i-2}\text{EVEN}(1...10) - 2^{i-2}\text{ODD}(1...11)$

$$\text{remark: } b = \sum_{j=1}^i u_j - 2^{i-1} \text{EVEN}(\overbrace{11...1}^{i \text{ times}}) + (2^{i-1}-1) \text{ODD}(\overbrace{11...1}^{i \text{ times}}).$$

After P_k announces u_k , the players privately add up the u_i 's from i=1 through k. Let us remark that

$$b = \sum_{j=1}^{k} u_j - 2^{k-1} \text{EVEN}(\overbrace{11...1}^{k \text{ times}}) + (2^{k-1} - 1) \text{ODD}(\overbrace{11...1}^{k \text{ times}}).$$

However, as we assumed at the beginning, there are no all-1 rows in Q, so

$$b = \sum_{i=1}^{k} u_i$$

and we are done. Each u_i can be communicated using $O(k \log m)$ bits, so the total communication is $O(k^2 \log m)$. \square

Now we return to the proof of Lemma 8. Let us divide the rows of matrix Q into blocks of $2^{k-1} - 1$ contiguous rows plus a leftover of at most $2^{k-1} - 1$ rows. The players cooperatively determine the number of the odd rows in each block, and then privately add up the results.

Next we show how to obtain the number of the odd rows for a single block at the cost of $O(k^2 \log m)$ bits of communication. P_1 knows all the columns, except the first, so he knows at most $2^{k-1}-1$ rows of length k-1 in a block, so he can find an $\beta' \in \{0,1\}^{k-1}$, $\beta' = (\beta_2, \beta_3, \ldots, \beta_k)$ which is not a row of the k-1 column wide part of the block seen by P_1 . Let $\beta = (1, \beta_2, \beta_3, \ldots, \beta_k)$. Then β does not occur as a row in this block. So if P_0 communicates β , and they play protocol ODDCOUNT of Lemma 9 for a given block. They use $k^2 \log m$ bits for a block, and, since there are at most $\lceil \frac{m}{2^{k-1}-1} \rceil$ blocks, the total communication is

 $O\left(k^2\log m\left\lceil\frac{m}{2^k}\right\rceil\right).$

4 PROOF OF THEOREM 5.

Lemma 12 Let f be a Boolean function and let $h: \{-1,1\}^n \to \mathbf{R}$ such that

$$L_2^2(f-h) = \langle f-h, f-h \rangle \le \varepsilon.$$

Then

$$\Pr_x \left(|f(x) - h(x)| > \frac{1}{5} \right) \le 25\varepsilon,$$

where Pr_x is the probability measure associated with the uniform distribution over $\{-1,1\}^n$.

Proof.

$$\varepsilon \ge \langle f(x) - h(x), f(x) - h(x) \rangle =$$

$$= \mathcal{E}_x(f(x) - h(x))^2 \ge \frac{1}{25} \Pr_x \left(|f(x) - h(x)| > \frac{1}{5} \right).$$

Now we prove Theorem 5. Let U be defined as

$$U = \left\{ x \in \{-1, 1\}^n : |f(x) - g(x)| \le \frac{1}{5} \right\}.$$

From Lemma 12, $|U| \ge (1-25\varepsilon)2^n$. If $\varepsilon \le \frac{1}{2500}$ then we can apply Lemma 8 for g. The proof proceeds then exactly as the proof of Theorem 1.

Acknowledgments. The author is grateful to *Chi-Jen Lu* for discussions on this topic. We also acknowledge the support of grants OTKA T017580, F014919.

References

- [1] A. Aho, J. D. Ullman, and M. Yannakakis, On the notions of information transfer in VLSI circuits, in Proc. 15th ACM STOC, 1983, pp. 151–158.
- [2] J. ASPNES, R. BEIGEL, M. L. FURST, AND S. RUDICH, *The expressive power of voting polynomials*, in Proc. 23rd ACM STOC, 1991, pp. 402–409.
- [3] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs, Journal of Computer and System Sciences, 45 (1992), pp. 204-232.
- [4] R. Beigel, The polynomial method in circuit complexity, in Proc. Eighth Annual Conference on Structure in Complexity Theory (SCT), IEEE Computer Society Press, 1993, pp. 82–95.
- [5] J. BRUCK AND R. SMOLENSKY, Polynomial threshold functions, AC⁰ functions and spectral norms, in Proc. 32nd IEEE FOCS, 1991, pp. 632– 641.

- [6] A. K. CHANDRA, M. L. FURST, AND R. J. LIPTON, Multi-party protocols, in Proc. 15th ACM STOC, 1983, pp. 94–99.
- [7] V. GROLMUSZ, Circuits and multi-party protocols, Tech. Report MPII-1992-104, Max Planck Institut für Informatik, January 1992. To appear in Computational Complexity.
- [8] —, On multi-party communication complexity of random functions, Tech. Report MPII-1993-162, Max Planck Institut für Informatik, December 1993.
- [9] —, The BNS lower bound for multi-party protocols is nearly optimal, Information and Computation, 112 (1994), pp. 51-54.
- [10] _____, A weight-size trade-off for circuits with mod m gates, in Proc. 26th ACM STOC, 1994, pp. 68-74.
- [11] —, On the weak mod m representation of Boolean functions, Chicago Journal of Theoretical Computer Science, 1995 (1995).
- [12] —, Separating the communication complexities of MOD m and MOD p circuits, Journal of Computer and System Sciences, 51 (1995), pp. 307–313. also in Proc. 33rd IEEE FOCS, 1992, pp. 278–287.
- [13] J. HÅSTAD AND M. GOLDMANN, On the power of the small-depth threshold circuits, Computational Complexity, 1 (1991), pp. 113-129.
- [14] J. KAHN, G. KALAI, AND N. LINIAL, The influence of variables on Boolean functions, in Proc. 29th IEEE FOCS, 1988, pp. 68-80.
- [15] N. LINIAL, Y. MANSOUR, AND N. NISAN, Constant depth circuits, Fourier transform and learnability, in Proc. 30th IEEE FOCS, 1989, pp. 574-579.
- [16] L. Lovász, Communication complexity: a survey, in Paths, Flows, and VLSI-Layout, B. Korte, L. Lovász, H. Prömel, and A. Schrijver, eds., Springer, 1989, pp. 235–265.
- [17] L. LOVÁSZ AND M. SAKS, Lattices, Möbius functions, and communication complexity, in Proc. 29th IEEE FOCS, 1988, pp. 81–90.

- [18] C.-J. Lu, private correspondence. 1995.
- [19] K. MEHLHORN AND E. SCHMIDT, Las Vegas is better than determinism in VLSI and distributive computing, in Proc. 14th ACM STOC, 1982, pp. 330-337.
- [20] N. NISAN AND A. WIGDERSON, On rank vs. communication complexity, in Proc. 35th IEEE FOCS, 1994, pp. 831–836.
- [21] A. Rényi, Probability Theory, North Holland, Amsterdam, 1970.
- [22] R. SMOLENSKY, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in Proc. 19th ACM STOC, 1987, pp. 77-82.
- [23] A. C. YAO, Some complexity questions related to distributed computing, in Proc. 11th ACM STOC, 1979, pp. 209-213.