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Abstract

The 2—party communication complexity of Boolean function f is
known to be at least log rank(A ), i.e. the logarithm of the rank of the
communication matrix of f [19]. Lovdsz and Saks [17] asked whether
the communication complexity of f can be bounded from above by
(logrank(My))°, for some constant ¢. The question was answered
affirmatively for a special class of functions f in [17], and Nisan and
Wigderson proved nice results related to this problem [20], but for
arbitrary f, it remained a difficult open problem.

We prove here an analogous poly-logarithmic upper bound in the
stronger multi—party communication model of Chandra, Furst and
Lipton [6], which, instead of the rank of the communication matrix,
depends on the L; norm of function f, for arbitrary Boolean func-
tion f.

1 Introduction

1.1 Communication Complexity

In the 2-party communication game, introduced by Yao [23], two players,
Py and P, attempt to compute a Boolean function f(xy,z3) : {0,1}" —
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{0,1}, where z1, 2, € {0,1}", 2n' = n. Player P; knows the value of z,, P,
knows the value of x;, but P; does not know the value of x;, for ¢+ = 1, 2.
The minimum number of bits that must be communicated by the players to
compute f is the communication complexity of f, denoted by k(f).

This model has been widely studied and was applied to prove time-area
trade—offs for VLSI circuits, and has other numerous applications and re-
markable properties (e.g. [1],[10], [11], [L7], [19], or see [16] for a survey).

An important problem in complexity theory is giving lower— and upper
estimations for the communication complexity of function f. The following
general lower bound to &(f) was introduced in [19]:

#(f) > logrank (My),

where My is a binary 2" % 2" matrix, containing the value of flz1,22) in
the intersection of the row of z; and the column of z,.

Lovdsz and Saks asked in [17] whether there existed an integer ¢ such that
for all Boolean function f

k(f) < (logrank (My))". (1)

In [17], (1) was proved for a special class of functions. Nisan and Wigderson
[20] also have nice results concerning this inequality. However, for general f,
(1) is open, and seems to be a difficult problem.

The main contribution of this paper is an analogous poly—logarithmic
upper bound for arbitrary f, in the stronger, k—party communication model

of [6]:
3
C(f) = 0( (log (nL1(1)))°);
for k = clog(nLi(f)) players, where C®)(f) is the k-party communication

complezity of f, and Ly(f) is the Ly spectral norm of Boolean function f
(both are defined below).

Remark. Recently, Chi-Jen Lu [18] observed, that a slight modification in
our ODDCOUNT protocol (Lemma 11), yields an O((log(nLl(f)))Q) upper
bound to CF(f).

1.2 Multi—Party Games

The multi—party communication game, defined by Chandra, Furst and Lip-
ton [6], is a generalization of the 2-party case. In this game, k players:
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Py, Py..., Py intend to compute a Boolean function f(x1, 22, ...,2,) : {0,1}" —
{0,1}. On set S = {1, x2,...,2,} of variables there is a fixed partition A
of k classes Ay, Ay, ..., Ay, and player P; knows every variable, except those
in A;, for + = 1,2,.... k. The players have unlimited computational power,
and they communicate with the help of a blackboard, viewed by all players.
The goal is to compute f(x1, 2, ..., 2,), such that at the end of the compu-
tation, every player knows this value. The cost of the computation is the
number of bits written on the blackboard for the given @ = (21,22, ..., 2,)
and A = (Aq, Ag, ..., Ag). The cost of a multi—party protocol is the maximum
number of bits communicated for any x from {0,1}" and the given A. The
k-party communication complexity, C’I(f)(f), of a function f, with respect to
partition A, is the minimum of costs of those k-party protocols which com-
pute f. The k-party symmetric communication complexity of f is defined
as

CW(f) = max (),

where the maximum is taken over all k-partitions of set {z1,zq,...,2,}.

This model was used by Babai, Nisan and Szegedy [3] for constructing
pseudorandom generators. Hastad and Goldmann [13], and we [7], [12] have
used it for proving lower bounds to the size of hard—to—handle circuit classes.

For a general upper bound both for two and more players, let us suppose
that A; is one of the smallest classes of Ay, A, ..., Ax. Then P; can compute
any Boolean function of S with |A;] + 1 bits of communication: P, writes
down the |A;| bits of A; on the blackboard, P; reads it, and computes and
announces the value f(xq,22,...,2,) € {0,1}. So

n

cO(f) < M 41 ()

For certain functions, much better upper bounds were proven in [6], [9], and
in [7]. However, by the author’s knowledge, before the present paper, no
general upper bounds were known, other than (2).

1.3 Spectral Norms

There is a vast literature on representing the Boolean functions by polyno-
mials above some field or ring (see, e.g. [2], [5], [22], [15], [14], or [4] for
a survey). One reason for this may be that the polynomials offer a more



Grolmusz: Harmonic Analysis, Real Approximation, and the Communication Complexity of Functions 4

developed machinery than the “pure” Boolean functions. One tool in this
machinery is the Fourier—expansion of Boolean functions [15], [5]:

Let us represent Boolean function f as a function f : {—1,1}" — {—1,1}
where —1 stays for “true”.

The set of all real valued functions over {—1,1}" forms a 2" dimensional
vector—space over the reals with an inner product:

(g.h) =27" > g(a)h(x).

ce{-1,1}"

Let us define for o = (o, ag, ..., o) € {0,1}"

n
o Qy
=1

The monomials X* for a € {0,1}" form an orthonormal basis in this 2"—
dimensional vector space; consequently, any function A : {—1,1}" — R can
be uniquely expressed as

h(xy, 22y .y @y) = Z a, X“ (3)

ae{0,1}?

The right-hand-side of (3) is called the Fourier—expansion of h, and numbers
a, for a € {0,1}" are called the spectral (or Fourier—) coefficients of h. The

L norm of A is:

Li(h) = . laal

a€e{0,1}m

The Ly norm:

—-

L= X ) =mht

a€g{0,1}n

1.3.1 Examples

e The PARITY function in this setting is zix,...x,, its L; norm is 1,
while its degree is n.
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o It is easy to verify that

n 1 n
V=g (27 - T+ 1) =
=1 2n- =1
1 on—1
i <2 —(Il+x1 a2+ ..+, +x120+ ...+ $1.172...$n));
and . . .
_ on—1 N
/:\1 T = 5oy <2 — g(l — ;172)) =
1 on—1 n
= 2”—_1<2 —(l—21—22— . — T+ 122+ ... + (—1) $1$2...In)).

Let us observe that both the n-fan-in OR and AND have exponentially
many non-zero Fourier—coefficients, their degree is n, while their L
norms are less than three.

e The inner product mod 2 function (IP) is defined as follows:

n

IP(x1, 22, ..., x20) = [[(22im1 A 725).

=1

It is easy to verify that L;(IP) is the highest possible for any 2n variable
Boolean functions: 2".

Bruck and Smolensky [5] established a relation between the L; norm and the
computability of f by polynomial threshold functions. A generalization of
one of their results plays a main role (Lemma 8) in the present work.

2 Main Results

At first we present a general theorem, which implies several corollaries with
more natural setting. Theorem 1 shows, that if a Boolean function can be
approximated by a real function with small error, then there exists a k-
party protocol which computes the Boolean function, and the number of
communicated bits in this protocol depends only on the L; norm of the
approximating real function.
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Theorem 1 Let f be a Boolean function: f:{—1,1}" — {—1,1}, and g be
a real function g : {—1,1}" — R. Suppose that for all x € {—1,1}",

ofe) — f(@)l < 3.

Then the k-party symmetric communication complexity of f is
nLi(g
O(k2 log(nLi(g)) { 2115 )-‘ ) )

In particular, choosing ¢ = f in Theorem 1:

Corollary 2 Let f be a Boolean function: f : {—1,1}" — {—1,1}, Then

the k—party symmetric communication complexity of f is

0(k2 log(nLi(f)) {nLj,ff)D.

O
Or, setting k large enough:

Corollary 3 Let f be an arbitrary Boolean function of n vartables. Let
k = clog(nLi(f)) with a ¢ > 0. Then

CH(f) =0 < log® (nL; (f))) :

O
In other words, if the L; spectral norm of f is bounded by a polynomial in
n, then the symmetric k—party communication complexity of f is at most

O(log® n), with k = clog n.

Let f and g be two functions, such that |f—g| < % Then their L; norms may
differ even exponentially: e.g. f =0, ¢’ is a Boolean function of exponential
L; norm, then ¢ = ég’ has also exponential L; norm, while |f — ¢| < é. So
the following corollary of Theorem 1 may yield a much better bound than
Corollary 3:
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Corollary 4 Let

v = inf{Ll(g)‘ g:{-1,1}" =R, andVz € {—1,1}": ‘g(x) — f(x)‘ < %}
Then ,

c() = 0o 5] ).
O

Suppose that f is a Boolean function of large (say, exponential) L; norm
in n. Qur Corollary 3 can guarantee only a communication protocol with
too many communicated bits: the trivial [%| 4+ 1 protocol may be better.
However, if the Fourier—coefficients of f are distributed “unevenly enough”,
i.e. they can be divided into two parts: one with small L;, the other with
small Ly norms, then we can do much better:

Theorem 5 Let

flz) = Z aa X,

ae{0,1}n

and let S C {0,1}" such that

. 1
Jor some € < 525, Let

glz) = D a. X"

a€{0,1}n—8

Then for all k > 2 and for all k—partitions of the inputs, there exists a k—party

protocol with 2
O (k2 log (nLl(Q)) [anlk(g)-‘)

bits of communication, and this protocol computes f correctly on at least

(1 —25¢) > &% fraction of the inputs.

O

The following results of [8] show the power of our upper bounds in Theorems
1 and 5, proving that almost all Boolean function has very high multi-party
communication complexity:
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Theorem 6 [8] Let f be a uniformly chosen random member of set

{1 A=-L1" = {=1, 1}

Then the probability, that for some A k—equipartition of X = {x1,22,...,2,},
there exists a k—party protocol, which computes f with communication of at
most | 7| —logn bits, is less than

—29(n)

2

O

The communication complexity remains high even if we compute f on most
of the inputs:

Theorem 7 Let f be a uniformly chosen random member of set

{1 A=-L1" = {=1, 1}

Then the probability, that for some A k—equipartition of X = {x1,22,...,2,},
there exists a k—party protocol, which correctly computes f on a fraction of
at least % + ¢ of inpuls, with communication of at most || —log = bits, is
less than

2_29(n)
O

Comparing Theorem 1 with Theorem 6, and Theorem 5 with Theorem 7, we
have got that for almost all Boolean function f:

e f has exponential L;—norm,

o If f is approximated by a real function ¢g with error less than 1/5, then
the L; norm of ¢ is exponential in n,

e the Fourier—coefficients of f are “evenly distributed”: they cannot be
divided into two sets, one with subexponential L; norm, the other with
a small Ly norm.



Grolmusz: Harmonic Analysis, Real Approximation, and the Communication Complexity of Functions 9

3 THE PROOF OF THEOREM 1.

The following lemma is a generalization of a lemma of Bruck and Smolen-

sky [5].

Lemma 8 Let U C {—1,1}" such that |U| > (1—75)2". Let g : {—1,1}" —

R. Suppose that for all x € U, % < |g(x)| < g is satisfied. Then there exists
polynomial Go(z) with integer coefficients and with 1, norm

L, (Go) < 400nL3(g)
such that

sgn(Go(z)) = sgn(g(x))
foralzeU.

Proof. The Fourier-expansion of g:

glz) = Y, a.X®

ag{0,1}n

where a,, for a € {0,1}", are the Fourier—coeflicients of g. Then by definition

Lifg)= > laal.

a€e{0,1}"

and

Li(g) =(g,9) =27" > (=)= > d,

re{-1,1}n ae{0,1}7
using the Parseval-identity.

Since |g(z)| > £ for x € U, and U] > (1 — 15)2",

La(o) > (1 - o) -

Our next step is giving a lower bound to the L; norm of g¢.
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(i) Suppose that there exists an a: |ao] > 3. If sgn(X*) = sgn(g(z))
for all @ € U, then we are done, Go(xz) = X suffices. Otherwise,
for some z € U, sgn(X?®) # sgn(g(x)). Then the other terms of ¢
must compensate for X%, so the sum of the absolute values of their
coefficients should be greater than 3. So

4 13
Li(g) > = +|au| > —.
()2 a2 D
(ii) Otherwise, if all |a,| < %, then
1 \16 1
—— )< Y a2<s Y aa
( 100)25 = o =9 2.

ae{0,1}n ag{0,1}n

SO

1432
(1—m)%§ Z |aa| = Li(g).

ag{0,1}n

Consequently, either we have found a suitable Gy(x), or we have concluded

that
1 )32 N 127

Li(g) > (1 - — )22 > 2=
19) 2 ( 100725 = 100

(4)

Let us define random monomials Z; as follows:

|

Li(g)

Let random polynomial G(z) be defined as the sum of N = [400nLi(g)]

monomials Z;:

Z; = sgn(aq,) X with probability

Computing the expectation of Z;:

() = |aa|sna a:g(:l:)
BA@) = 3 (o)X

where we used the fact that sgn(v)|v]| = v.
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The expectation of G(x)

The variance of Z;:

Var(Zi(z)) = B(Z2) — E(Z;) = 1 — g(2)

The variance of G(z):

Var(G(z)) = N(l - 92(“7)).

Since |g(z)| < £, and because of (4):

o) (120 9

L2(g) — \127) =10
SO

% <Var(G(z)) <N
or

N
\/—Os D(G(x) < V. )
where D(G = y/Var(G(z)), the standard deviation of G(z).

From (5), the sign of E(G(x)) is the same as the sign of g(z). Consequently,

Pr (sgn(G(x)) # sgn(g(z)) =
= Pr (sgn(G(2)) # sen(E(G(2)))) <
|

P (Jeto) — Bt = 4 <

vV

Pr (J6te) — BIG) > 515 )
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From the Bernstein—inequality (see [21]), (or from the Central Limit Theo-
rem), with D = D(G(z)), we have got:

Pr([6(a) — E(Ge)| > D) < 2exp - ﬁ) 7
where 0 < p < g.

For y = 3y/n, N = [400nL3(g)| we got that the probability in (7) is less
than e™". On the other hand,

AN
pD < 5Tn(g)
s0
Pr (sgn(G()) # sen(g(x))) < e
Consequently,

Pr(3z € U :sgn(G(x)) # sgn(g(x))) <
< X;JPI’ (sgn(G(a)) # sgn(g(z))) < |Ule™ <2%e™ <1,

and since this probability is less than one, there exists a polynomial Go(x)
for which sgn(Go(z)) = sgn(g(z)) for all @ € U. The coeflicients of this Gy

are integers, and its LL;—norm is at most N. O

Proof of Theorem 1. Function g satisfies the requirements of Lemma 8, for
U = {—1,1}". Then there exists a polynomial G(z) with integer coefficients
and an L; norm of at most 400nL3, such that

sgn(g(z)) = sgn(Go())

for all € {—1,1}". Since sgn(g(z)) = f(z), we have got that sgn(Go(z)) =
f(z), for all z € {—1,1}". And, by the following Theorem 9, G(z) has the

needed symmetric k—party communication complexity.O

Theorem 9 Let
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where Z; = X or Z; = =X, for some a € {0,1}", and for x € {—1,1}".

Then the symmetric k—party communication complexity of G is

o(kagouw){iiqw).

Proof of Theorem 9 Let (7;(z) be the sum of Z;’s with positive sign, and
let G3(z) be the sum of (—7;)’s, where Z; has a negative sign. So:

G(z) = Ga(z) = Ga(z),

and G has Nj terms, (G5 has Ny terms, Ny + N, = N.
Let us observe that (z) is the sum of N; terms of form

n

X“:Hx?i: H Z;

=1 ;=1

for y =1, 2.
Clearly,
X — { -1, if {i:2;, = —1,a; = 1}] is odd
1 otherwise

For j = 1,2, let b; denote the number (counting the possible multiplicities)

of those terms X in G;(x), for which [{¢ : 2; = —1,; = 1}| is odd. Then
Gj(z) = (N; — b;) — bj = N; — 2b, so:

Let us denote )
’__{1, if o; =—1
Y= 0, i =1

then i
XY= -1+« Zyiai = 1 mod 2.

=1
Let us form a matrix M) with N; rows and n columns, for j = 1,2. Each
row is corresponded to a term X® in ;(z), and the :** entry of that row is
Y.
Obviously, the number of those rows of M) which have odd sum is equal to
b;. Suppose now that we are given polynomial G(z), players Py, Ps, ..., P, and
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a k-partition A = (Ay, A, ..., Ag) of the set {x1, z9,...,2,}. We assume that
player P, knows function G/(x), partition A, functions G1(x), G2(x), and the
values of all variables, except those in Ay, for £ = 1,2, ..., k. Then the players,
without any communication can privately compute matrices M®) and M?),
and exactly those entries of these matrices will be not known for player P,
which were corresponded to variables in class A,. The set of these entries will
be called By, for ¢ = 1,2,...., k. The following lemma shows a protocol by
which the players can first compute b; and then by, and consequently, G(z),
by equation (8).

Lemma 10 Let M € {0,1}™**, M = {my;}, and let B = {B1, Ba, ..., By}
a partition of the set {m;; : 1 <1 < m,1 < j < n}, such that player P,
knows every m;; except those in By, for £ = 1,2,...,k. Then there exists a
k—party protocol which computes the number of the rows with odd sum in M

with communicating
m

Proof. First, the players compute a matrix Q € {0,1}™** from M, with
no communication: for each row of M a row of () is corresponded; the first
element of row j of Q is the mod 2 sum of those entries of the j** row of M

bits.

which are the elements of By at the same time. Analogously, the i** element
of row j of @ is the mod 2 sum of those entries of the j* row of M which
are the elements of B; at the same time.

Clearly, the number of rows with odd sum in M and in ) is the same.
Moreover, player P, knows every column of matrix (), except column ¢, for

(=1,2,..., k.

With an additional assumption, Lemma 11 gives a protocol with O(k? logm)
communication. This protocol is implicit in [2], in [9], and is used in a more
general form in [7].

Lemma 11 Let 3 € {0,1}*. Suppose it is known to each player that 3 does
not occur as a row of (). Then there exists a k—party protocol which computes
the number of the odd rows with a communication of O(k*logm) bits.
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Proof of Lemma 11 Without restricting the generality we may suppose
that 3 is the all-1 vector of length k.

Let ODD(7172...7¢) and EVEN(4172...7¢) denote the number of those rows
of @ which have odd (respectively, even) sums, and they begin with v17y2...79s,
<k, ~ €{0,1}.

For example, P; does not know the first column of (), but he can communicate
ODD(0) + EVEN(1) if P; counts those rows which has odd sum in its second
through kth position. Similarly P, can communicate ODD(10) + EVEN(11)
if he counts those rows which begins with 1, and the sum of their first, 3rd,
4th,...,kth elements is odd.

This observation motivates the following protocol:

PROTOCOL ODDCOUNT

The goal: to compute b, the number of rows with odd sum in (). Number b
will be the sum of values u; announced by player P;, 1 = 1,2, ..., k.

P, announces u; = ODD(0) + EVEN(1).
remark: b= u; + ODD(1) — EVEN(1).

P, announces uy = ODD(10) + EVEN(11) — EVEN(10) — ODD(11).
remark: b= u; + uy — 2EVEN(11) 4+ 20DD(11)

P5 announces uz = 20DD(110) 4+ 2EVEN(111) —2EVEN(110) —20DD(111).

remark: b= u; + uy + us —4EVEN(111) + 30DD(111)

P; announces u; = 2°-20DD(1...10)+2"2EVEN(1...11) -2 "2EVEN(1...10) —
2-20DD(1...11)

7 times 7 times
remark: b= Y\_; u; — 2 7'EVEN(11...1) + (2! — 1)ODD(11...1).
After P, announces ug, the players privately add up the wu;’s from 7 = 1
through k. Let us remark that
k times k times

k
b= wu; —2*'EVEN(1L...1) + (2*~' — 1)ODD(11...1).

i=1
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However, as we assumed at the beginning, there are no all-1 rows in @), so

k
b= Z uj
71=1

and we are done. Each u; can be communicated using O(k log m) bits, so the
total communication is O(k*logm).0

Now we return to the proof of Lemma 8. Let us divide the rows of matrix
@ into blocks of 28=1 — 1 contiguous rows plus a leftover of at most 2F=1 — 1
rows. The players cooperatively determine the number of the odd rows in
each block, and then privately add up the results.
Next we show how to obtain the number of the odd rows for a single block
at the cost of O(k*logm) bits of communication. P; knows all the columns,
except the first, so he knows at most 2°~1 — 1 rows of length k£ — 1 in a block,
so he can find an 3’ € {0,1}*1, 3’ = (B2, B3, . . ., B) which is not a row of the
k — 1 column wide part of the block seen by P;. Let 8 = (1,82, B3,..., (k).
Then 3 does not occur as a row in this block. So if Py communicates 3, and

they play protocol ODDCOUNT of Lemma 9 for a given block. They use

k*logm bits for a block, and, since there are at most [-2%—] blocks, the

2k—1_1
m
O(k2 log m[z—k-‘)

total communication is

4 PROOF OF THEOREM 5.
Lemma 12 Let f be a Boolean function and let h: {—1,1}" — R such that
L(f—h)=(f —h,f—h)<e

Then |
Pro(1f(2) = ha)| > £ ) < 25,

where Pr,, is the probability measure associated with the uniform distribution
over {—1,1}".
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Proof.
£ > (f(x) — h(), f(z) — h(x) =
= B.(f(2) ~ h(@)* 2 =P (1f(x)  h(x)| > 1),
O

Now we prove Theorem 5. Let U be defined as

1
U={ee{-L1)":|f(x) —gx)| < £ }.
From Lemma 12, |U] > (1 —25¢)2". If ¢ < 5= then we can apply Lemma 8
for g. The proof proceeds then exactly as the proof of Theorem 1.0
Acknowledgments. The author is grateful to Chi-Jen Lu for discussions
on this topic. We also acknowledge the support of grants OTKA T017580,

F014919.
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