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Abstract. We define, construct and sketch possible applications of a
new class of non-linear codes: co-orthogonal codes. The advantages of
these codes are twofold: first, it is easy to decide whether two codewords
form a unique pair (this can be used in decoding information or iden-
tifying users of some not-publicly-available or non-free service on the
Internet or elsewhere), and the identification process of the unique pair
can be distributed between entities, who perform easy tasks, and only
the information, gathered from all of them would lead to the result of
the identifying process: the entities, taking part in the process will not
have enough information to decide or just to conjecture the outcome of
the identification process.

Moreover, we describe a fast (and general) method for generating (non-
linear) codes with prescribed dot-products with the help of multi-linear
polynomials.
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1 Introduction

In the present paper, we define, construct and sketch possible applications of
a new class of non-linear codes: co-orthogonal codes. The advantages of these
codes are twofold: first, it is easy to decide whether two codewords form a unique
pair (this can be used in decoding information or identifying users of some not-
publicly-available or non-free service on the Internet or elsewhere). Second, the
identification process of the unique pair can be distributed between entities,
who perform easy tasks, and only the information, gathered from all of them
would lead to the result of the identifying process: the entities, taking part in
the process will not have enough information to decide or just to conjecture the
outcome of the identification process.

The identification is done by the following procedure: two sequences, a =
(a1,a2,...,a,) and b = (b1,ba,...,b,) forms a pair, say, modulo 6, if 6 is a
divisor of the sum .
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If, for every a there is exactly one b which forms a pair with a (and this fact
can be decided easily), then, for example, keeping b secret would identify a. Our
main result is that these codes (co-orthogonal codes) contain much more code-
words, than the orthogonal codes, where the pairs are identified by the fact that
in the sum above 6 is not a divisor of the sum. We also note, that taking 6 (or
a non-prime power other small integer) is an important point here: we will get
more code-words than in the case of primes!

1.1 Orthogonal codes

Definition 1. Letn > 0 and r > 1 be integers, and let Z,. denote modulo-r ring
of integers. We call A C Z' an orthogonal code, if we can list the elements of
Aas A={a',a?...,a*} U {b}, b2, ... b}, such that for all a' € A: a*-b' £ 0
(mod 1), but for all i # j:a*-b =0 (mod r).

In the definition above we allow a’ = b?, and u - v denotes the dot-product
(or scalar-product) of vectors v and v.

Ezample 1. Let n = 2,7 = 5, and A = {a',a?,b,b%}, where a' = (1,1),b! =
4,2),a® = (4,2),b?> = (3,2). Then the pairwise dot-products can be given as a
2 X 2 matrix:

B
a' (a'-b' a'-b? 6 5 10
a2 <a2-b1 a2-b2):(20 16)5(0 1) (mod ).

The advantages of orthogonal codes The orthogonal codes have very at-
tractive properties:

— For each a® € A it is easy to verify that a given vector u € A would serve as
bi:if a'-u#0 (mod r) then u = b'.

— The dot-product can be computed in a small memory: only modulo r com-
putations (multiplications and additions) are needed.

— Suppose, that we have three players Py, P>, P3, and the coordinates of the
code-words of a* and u are partitioned between them: suppose, that the first
n/3 coordinates of the vectors are known for Py, the second n/3 to P, and
the third n/3 to P; (assume, that n is a multiple of 3). Then they can verify
collectively whether u = b: for j = 1,2,3, P; compute the dot-product of
their known coordinates, and the mod r sum of their result gives the answer:
if the value is not 0 modulo r, then u = b‘. Let us note, that the players
alone tipically will not know the answer.

— An easy and fast parallel algorithm computes the dot-product of the two
vectors, with n processors for the length-n vectors it can be done in clogn
time.



Let us remark, that a trivial code with the highest possible rate has almost all
properties mentioned above: indeed, consider code B = {0,1}", and let a,b € B
form a pair if a = b. Since a = b can be verified bitwise, it follows that the
pair-verification can be done in parallel. However, as was noticed by Kiraly [6],
if a # b then it will be witnessed by one or more processors or players, who
knows only the bits (or sub-sequences) of a and b, so if a and b does not form a
pair then it will be known for a player. This property can be fatally bad if our
goal is to hide the outcome of the verification process.

The disadvantage of orthogonal codes It is easy to see, that if r is a prime,
then the maximum size of an orthogonal code (that is, the cardinality of A,
|A]) is at most 2n, if the length of the code-words are n: (simply the matrix in
Example 1 has full rank, because of the orthogonality property). That shows,
that the rate of orthogonal codes are extremely low for r primes. It is not difficult
to show, that the situation is not much better if r is a composite number: if r
has ¢ prime divisors, then |A| is at most 2¢n, which is still very small.

1.2 Co-orthogonal codes

Definition 2. We call A C Z7' a co-orthogonal code, if we can list the elements
of Aas A= {a',a?, ...,a’}U{b', b2, ... b}, such that for alla’ € A:a’-b* =0
(mod r), but for all i # j:a*-b £0 (mod r).

E’mample 2. Let n— 2,1 = 6, and A = {a',a?,a%,a*,a®,ab b, b2, b3, b*, b5, b0},
where al = (2,1),a? = (5,1),a° = (2,3),a" = 5= (1,2),0° = (3,5), and
bt = (5,2),b% = (1,1),b% = (3,2),b* = (1,5),b° = (2,5),b% = (1,3). Then the
pairwise dot-products can be given as a 6 x 6 matrix:

bt »¥obt v bE

a (12 3 8 7 9 5 0321375
a>[27 6 17 10 15 8 305 43 2
adl16 5 12 17 19 11| _|4 5 0 5 1 5
at|14 4 10 12 14 8 |=|2 44 0 2 2| (modb)
@l 9 3 7 11 12 7 331501
a®\25 8 19 28 21 18 1 21 4 30

Note, that for code-length is 2 again, but we have |A| = 12.

We have shown in [2], that if r is a prime, then the rate of co-orthogonal
codes are not much larger than the rate of orthogonal codes: there exist at most
O(n"~1) co-orthogonal code-words for any n . However, quite surprisingly, for
non-prime-power, composite r's (e.g., r = 6), there are co-orthogonal codes of
much larger rate (see Theorem 1).



The advantages of co-orthogonal codes It is obvious, that the co-orthogonal
codes have the same advantages as the orthogonal codes: It is very easy to
identify the matching code-word pairs; the computations can be done modulo
a small number (in our example this number is 6); the identification process
can be shared between players, not knowing the outcome of the identification.
However, we can show, that the serious problem of the orthogonal codes, i.e.,
their very low rate does not appear here. We show this in the next section, with
algorithmically fast constructions.

2 Constructing Co-orthogonal codes modulo a composite
number

We give here some constructions for co-orthogonal codes. These constructions
use techniques from papers [3], [2], and especially from [4]. The existence of
(special) mod 6 co-orthogonal codes with high rate falsified old conjectures in
extremal set theory (see [3] for details). This high rate of our codes facilitates
the possible application of co-orthogonal codes. We note, that our codes here
are binary (i.e., only 0 and 1 will appear in the code-words), but r, the modulus
is a non-prime-power composite number.

Theorem 1. Let m be a positive integer, and suppose that m has r > 1 different
prime dwisors: m = piips?..pd. Then there exists ¢ = c(m) > 0, such that for
every integer N > 0, there exists an explicitly constructible binary co-orthogonal

code H modulo m, of length N , such that |H| > exp (c%). Moreover,

the minimum Hamming-distance between any two codewords of H is

c'Nloglog N
log N

for a positive c'.

Note, that |H| grows faster even for m = 6 than any polynomial in n. Note
also, that the code-generation is a fast polynomial algorithm (see Section 3.3).

2.1 k-wise Co-Orthogonal Codes

A generalization of the co-orthogonal codes is the k-wise co-orthogonal codes.
While co-orthogonal codes are useful since their easy pair-identification prop-
erty, k-wise co-orthogonal codes can be used for group-identification. Since dot-
product (or scalar-product) can be defined only between only two vectors, we
need a natural generalization here.

Definition 3. Let A = {a;;} and B = {b;;} two u x v matrices over a ring R
with unit element 1. Their Hadamard-product is an u x v matriz C = {¢;;},
denoted by A ® B, and is defined as c;j = a;jbij, for 1 <i<w, 1 <j <w. Let



k

k > 2. The k-wise dot product of vectors of length n, a',a?,...,a" is computed

as
(a1®a2®...®ak).17

where 1 denotes the length n all-1 vector.

Note, that if a’ is a characteristic vector of a subset A; of an n-element

ground-set (for i = 1,2,...,k), then a'! ®a? ® --- ® a is a characteristic vector
of ﬂle A;, and the k-wise dot-product of a',a?,...,a* gives the size of this
intersection.

Definition 4. For a k > 2 we call A C ZI" a k-wise co-orthogonal code modulo
m, if the following holds:

— Va' € H there exist a®,a®,...,a* € H such that (' ®a’®---©ad*)-1=0
(mod m),
— If{a?,a®,...,aF} # {b2,03,... b}, b€ H, i =2,3,... k, then

(@O ebte---0b*)-1#£0 (modm).

Now we can formulate the following result. The construction is — surprisingly
— exactly the same as the construction for proving Theorem 1, and it is an
improvement of a construction appeared in [5] for set-systems.

Theorem 2. Let n,t > 2 integers, and let p1,ps,...,p. be pairwise different
primes, and let m = pips---p,. Then there exists a ¢,, > 0 and an explicitly

constructible code H of length N, such that |H| > exp (%), and H 1is
k-wise co-orthogonal for any k > 2.

The identification of a group is done with the easy computation of the k-wise
dot-product of the codes of the members of the group. If this number is 0 modulo
m, then the group is passed the identification, otherwise it failed.

3 Constructing code f(A) from f and A

Our construction is based on a method given in [4] and the BBR-polynomial
[1]. In paper [4], we gave a general construction for hypergraphs with prescribed
intersection sizes. Qur construction described here can also be applied for con-
structing codes with prescribed dot-product matrices. For a detailed discussion
of this problem, see [4].

Here we re-formulate this method in a form which is more suitable for our
purposes in the present work.

Definition 5. Let f(z1,%2,...,Tn) = EIC{I,Z.,,,n} arzr be a multi-linear poly-
nomial, where xr = [[;c;x:. Let w(f) = [{ar : ar # 0}| and let Li(f) =
ZIC{1,2,...,n} |z |-



Definition 6. Let A = {a',a?,...,a*} C {0,1}" be a binary code. Then the
matriz of A, denoted by M(A), is an n X £ 0-1 matriz, with column j equal to
the code-word a’, for j =1,2,...,¢.

Definition 7. Let A = {a',a?,...,a'} C {0,1}" be a binary code, and let f
be an n-variable multi-linear polynomial with positive integer coefficients. Then
binary code f(A) = {ct,2,...,ct} € {0,1}12() is defined as follows: The rows
of M(f(A)) correspond to monomials x1’s of f; there are ar identical rows of

M(f(A)), corresponding to the same x1. The row, corresponding to xp, is defined
as the Hadamard-product of those rows i of M(A), with i € I.

Ezample 3. Let f(x1,22,%3,%4) = T1 + T2 + 22324, and let the matrix M (A) of
code A = {a',a?,a®} be

at a? a®

1/0 1 1

211 1 1

M(A) = 311 0 1

4\0 0 1

Then the matrix of code f(A) is

o2 3
T1 0o 1 1
L@ |11 1
MEAN= el o 0 1
z3za \ O 0 1

The most important property of code f(A) is given in the following Theorem:
Theorem 3. Lett > 2 and let a* € A for £ =1,2,...,t. Then
flar©ad?e---0d") = (0?00 1L o))

An analogous theorem for set-systems appeared in [4]. We reproduce here its
short proof.

Proof. Consider a monomial zr of f, for some I C {1,2,...,n}. Let us observe,
that monomial z; contributes one to the left hand side of equation (1) exactly
when for all j € I, the j*® coordinate of every code-word a*, a®, ..., a’ are equal
to 1. This happens exactly if the coordinate of ¢* ® ¢2 ® - - -® ¢, corresponding
to monomial zj, is 1, that means, that one is contributed to the right hand side
of 3. O

3.1 Owur main construction

Our binary co-orthogonal code will be constructed as f(A), from a well-chosen
polynomial f and a dense code A. For simplicity, in this preliminary version of
this work, we prove Theorems 1 and 2 only for modulus m = 6.



Our f will be the BBR-polynomial. Barrington, Beigel and Rudich [1] showed,
that for integers a and (3, there exists an explicitly constructible, symmetric, n-
variable, degree-O(min(2%, 3%)) polynomial f, (the BBR-polynomial), satisfying
over T = (r1,%T3,...,T,) € {0,1}™

f(@)=0 (mod6) <= > z;=0 (mod2°3°). (2)
i=1
Our A is defined as follows. Let A denote all the weight-2®3°% — 1 binary
code-words of length n — 1. Code A is got from code A if we add a leading 1 for
all codewords in Ay, consequently, each word in A is binary, has weight 2%3°,
and the dot-product of any two different words in A is non-zero, but less than
2238 However, the dot-product of any a € A with itself is equal to 2%3°.
Let us remark, that A itself is a co-orthogonal code modulo 2%35.
Moreover, for any k > 2, the dot-product of any k¥ words (containing at least
two different words) in A (see Definition 3) is also non-zero, and less than 2%3°.
Now let a be the smallest integer that n'/3 < 2%, and let 8 be the smallest
integer such that n'/? < 3%. Then the degree of f is O(n'/?).
Let us consider now code H = f(A). It contains at least (,3s) code-words
of length N =L, (f) = O(n”m)7 so
(log N)?
1= 1) = exp (e b)),

And, from Theorem 3, for any a € H a forms a pair only with b = a, for
any b € H, modulo 6, this proves the first part of Theorem 1. The k-wise co-
orthogonality follows also from Theorem 3.

For computing the minimum-distance of the code (for proving Theorem 1),
we should note, that any two elements a* and a? of A differs in at least one
bit. The weight of a’ is 223° = @(n?/?), that means — because polynomial f is
symmetric — that the corresponding code-word of f(A), ¢! has weight at least

n’? 2038 n2/3
= (% )7 Gos)
k=1

If we flip one 1-bit to zero, then at least

n2/3 n2/3 -1
(n1/3) _( nl/3 >

monomials of f become zero, that is, at least that many coordinates of ¢’ become
zero by flipping any bit. Now the result follows.

3.2 Alternative constructions

We would get more dense codes if we had a BBR polynomial with smaller degree,
but, unfortunately, it is not known whether there exists such polynomial with
lower degree. (For other applications of the BBR polynomial see [3] and [2]).



Alternatively, we can choose different codes A for the construction. For ex-
ample, consider the following code A. Let vectors a’ be all the weight-2%3° code-
words of length n, and let b* be the complement of a’, for i = 1,2,..., (,J%5)-
Then it is easy to see, that A is co-orthogonal code modulo 223%. Then, from
Theorem 3, with the BBR-polynomial f, code f(A) is also a co-orthogonal code,
but now modulo 6.

We list some further variants of codes A in Section 4.

3.3 Algorithmic complexity of computing f(A)

Let a' be a code-word of A and let ¢! the corresponding code-word of f(A).
Then the coordinates of ¢! is computed as the values of monomials of f with
substituting a’: f(a?). The value of a degree-d monomial can be computed in
O(d) steps; so the length-N ¢! can be computed in N log N steps.

4 Cryptographic applications

Perhaps the most straightforward application is the following one: keep secret
vector a!, and accept vector z only if a2 =0 (mod m). From the co-orthogonal
code, only = = b® satisfy this relation, but outside that code, many more z’s may
satisfy it; for example, x = 0 always satisfies this requirement.

Consequently, for any cryptographic application first we should verify
whether x is in the code or not. We call this phase membership testing. If x
fails the membership test, reject it. If 2 passes the membership test, then com-
pute y = a’-z mod m (even in a distributed way), and accept z iff y is 0, modulo
m, and reject it otherwise.

Another problem with our main construction (Section 3.1) is the following:
The pair of any a € f(A) is the same a itself!. That means, that if the verification
process is distributed among players, any player who finds that a coordinate is
different in a and b will know that they are not pairs. This problem can be
avoided by applying some linear transformations for the codes, as described in
Section 4.2.

4.1 Membership testing

Tt is easy to see, that in any polynomial f, satisfying property (2), must contain
monomials of degree one z; (i = 1,2,...,£) with a non-zero coefficient. That is
also true for the BBR-polynomial f used in our construction.

Now, suppose that we need to verify whether ¢ € f(A). We know, that which

coordinates of a code-word ¢ should correspond to monomials z; (i = 1,2,...,n),
then, first we read only these (at most n) coordinates of c. The values of x; should
be equal to the coordinates of some a/ € A: z; = a}, for i = 1,2,...,n. If this

will not be satisfied, discard c¢, it is not in our code. Otherwise, compute from
a’ and from f the code-word /. If ¢ = ¢/, accept c, otherwise reject.

This algorithm can be performed in O(|c|log(|c|) steps by the most straight-
forward implementation.



4.2 Non-binary, non-self-paired codes

We describe a quite general method to get non-binary from the binary co-
orthogonal codes generated in Section 3.1. Note, that if the pair of a was a
itself in the original construction, this property will disappear in the modified
one:

Our idea comes from the following well-known identity:

T'A-y=a"-yAT,

where 2’y are length-n g-ary code-words, and A is an n X n matrix.
So, if m is a prime we can consider the m-element-field, and transform our
code C into code Cy4 for any non-singular matrix A over the field as follows:

Ca={zA 'z e CYu{yAT :y e C}.

Clearly, if 2’A = z, then -y = 2'A-y = 2' - yAT, so if C' was a co-
orthogonal code, then C4 is also a co-orthogonal code over the field, and the
pair of 2’ = zA™! is xAT = 2’ AAT | which tipically differs from 2’ (we should
avoid unitary A’s).

However, in our main construction m is composite, say m = 6. So, we should
choose a non-singular n X n matrix A over the 2 element field, and another one,
B, over the 3 element field. Suppose now, that C is a co-orthogonal code modulo
6. Then certainly

Cap={3zA"'+22B :2 € CYu {3yAT +2yB” : y € C}

is a co-orthogonal code mod 6, and the pair of 3zA~! +2zB~! is exactly 3zAT +
22BT (Note that A~! is the inverse of A over GF, and B~! is the inverse of B
over the three element field.)
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