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Abstract

New methods for reliable quantitative analysis of biological net-
work data are in high demand in today’s bioinformatics and pro-
teomics. Here we demonstrate the applicability of the co-citation,
developed earlier for the analysis of scientific literature and the web
graph for finding functionally similar nodes in protein-protein interac-
tion networks in several model organisms. We have found clear corre-
spondence between related enzymatic functions and high co-citation
of proteins in interaction networks.

1 Introduction

The need for understanding the functional and structural interconnection
patterns of proteins lead the scientific community to the construction of
protein-protein interaction (PPI) networks from tens or even hundreds of
thousands measurement data [1, 2, 3,4, 5,6, 7, 8,9, 10, 11]. These networks
are widely available publicly, and facilitate an unprecedented view to the
proteome.

Reliable tools for handling and analyzing large PPI networks are being
developed today [12, 13, 14, 15]. One relevant question is to find function-



ally similar proteins in these networks, using exclusively the graph-theoretic
properties of the networks.

In the present work we demonstrate that co-citation is a reliable tool for
finding functionally similar proteins in PPI networks.

Co-citation was introduced by Henry Small in 1973 in the context of sci-
entific literature analysis [16]. The co-citation of two documents was defined
as the number they cited together in other publications.

Co-citation can be applied for identifying similar nodes in a graph or
network, exclusively from the graph structure: if two nodes have high co-
citation, then they can be considered similar (clearly, a node is most similar
to itself, so high number of common neighbors of two different nodes may
imply similarity in some sense). In the case of the web graph, this method
is well known and used widely [17, 18].

One can easily define co-citation for un-directed graphs as well: The co-
citation of two nodes is the number of their common neighbors in the graph.

A co-citation-like approach was applied by in biological context for verify-
ing and repairing protein-protein interaction networks and for the prediction
of complexes by [19]: there triangles were used in the analysis, with two
edges from the protein-protein interaction network, and one edge derived
from structural domain-domain similarity.

In our approach we use solely the network topology, and nothing else for
the analysis. For the evaluation of our method, we need an independently
verified functional similarity measure for the proteins involved: we apply the

number of
. number of | number of | average highest number of | nodes in the
Properties of the networks
nodes edges degree degree | components largest
component
Homo sapiens 8138 36682 6.62 479 106 7916
Saccharomyces cerevisiae 5687 65819 16.87 968 9 5677
Homo sapiens max 90 7211 26993 531 87 139 6906
Homo sapiens max 120 7566 7566 5.85 119 124 7289
Saccharomyces cerevisiae, max 90 5157 39110 10.39 84 44 5099
Saccharomyces cerevisiae, max 120/ 5309 45842 11.97 115 36 5259

Table 1: The summary of the networks analyzed. The data were downloaded from
the IntAct [11] database. The "max 90” and "max 120" versions of the networks
were gained by deleting all nodes of degree, larger than or equal to 90 and 120,
respectively.



enzyme commission number (EC number) [20] classification of the enzymes
for the evaluation of similar biochemical function.

2 Materials and Methods

The PPI networks were downloaded from the IntAct database [11]:
(http://www.ebi.ac.uk/intact/main.xhtml): the Saccharomyces cerevisiae
data the on March 12, 2010, and the Homo sapiens data on April 6, 2010.

For the networks downloaded we computed the co-citation [16] of the
vertices.

Definition 1 For a graph vertex x let I'(x) denote the set of neighbors of x.
The co-citation of nodes a and b is defined

c(a,b) = |I'(a) NT(b)]

Let A denote the adjacency matrix of the graph of the PPI network: the
nodes vy, vs, . . ., v, of the graph represent proteins, the edges the interactions
between proteins; then the adjacency matrix of an n-vertex graph is an n xn
0-1 matrix, where in row ¢ and column j there is a 1, if and only if node v; is
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Figure 1: Functional similarity in the function of co-citation in Homo sapiens. The
x-axis shows the co-citation values, the y-axis shows the ratio of similar pairs/all
pairs in all three versions of the graph: the original one, and in the “max 120” and
“max 90” versions of it. Obviously, filtering out the large degree nodes improves
considerably the functional correspondence of the high co-citation nodes in the
graph.



connected to node v;. Clearly, the co-citation of the graph can be computed
easily by the matrix product AA”: the intersection of row i and column j of
AAT contains c(v;, vj) if 1 # j.

For the evaluation of node similarity in PPI networks we applied en-
zyme commission numbers (EC numbers) [20]. EC numbers classify enzymes
according to the reactions they catalyze. An enzyme can have more than
one EC number (if it catalyzes more than one reactions), and from proteins
only enzymes have EC numbers. The EC number consists of four blocks:
The first block describes one of the six functional groups (oxidoreductases,
transferases, hydrolases, lyases, isomerases, and ligases). The two blocks fol-
lowing refer to further subclasses within the main class. The last block is a
consecutive number of each of the enzymes in the particular subclass [20].
Consequently, if the first three blocks of the EC numbers coincide for two
proteins, it means they catalyze similar reactions. In the evaluation we took
those proteins similar, that coincided in the first three blocks of one of their
respective EC numbers. Since not all proteins have EC numbers, this way of
evaluation does not capture the whole graph.

The SwissProt [21] and the KEGG [22] databases were used for annotating
the protein accession numbers of the nodes with EC numbers [20].

3 Results and Discussion

We show in the below that co-citation is a stable measure of node similarity.
Note, that stability is a crucial property if we are dealing with error-prone
large networks like PPI networks [23] or the World Wide Web. Most probably
the stability of the PageRank [24, 25] made it the most successful tool for
finding important nodes in large networks, while other, not so stable node
valuations (like the HITS algorithm [26]) are much less used today.

Theorem 1 Let G = (V) E) be an undirected graph of n vertices, and let G =
(f/, E) be a graph that we get after adding or deleting at most k edges. Let us
denote c(a,b) the co-citation of nodes a and b in graph G, and ¢(a,b) the co-
citation of nodes a and b in graph G. Let us denote the vector of co-citations
of all possible node-pairs of length (Z) in graph G asc= (...,c(a,b)...) and
in graph G as ¢ = (..., &a;b),...). Then

llc —é||1 < 2kd,,



where d,, is the mazimum degree of the nodes, connected by the added or
deleted edges in graph G.

Proof: If we add or delete an edge between u and v, only those co-citation
values can change, where one of the partners is either u, and the other is a
neighbor of v or v and the other is a neighbor of u. Therefore, the sum of
the absolute values of the co-citations may change by at most

> d(u) +d(v)
{u,v}

where the summation is taken for the u,v endpoints of the added/deleted
edges. Since for all u: d(u) < d,,, the statement follows. O

Theorem 1 shows, that if the perturbed edges connect to low-degree
nodes, then the total effect of the perturbation to the co-citation vector
is small. This observation shows the robustness of the co-citation, since the
less important parts of the interaction graphs (that contain low-degree nodes
only) are frequently mapped less reliably.

3.1 Relativized version of co-citation

Clearly, co-citation need also be examined relative to the degrees of the
vertices in the graph: if most of the neighbors of two nodes are common
that may imply the stronger similarity than in the case when only a small
fraction of them is common.

The following definition gives the definition of the relativized co-citation
measure.

Definition 2 The Jaccard coefficient of the co-citation is defined as

_ [F(a)nT(d)]
RN OO}

3.2 Biological evaluation of the node similarity

In the experiments, we computed similarity scores on the whole graph, but
when evaluating the results, we only considered those node pairs where both
nodes had EC numbers.

For test graphs, we used the human and the yeast protein interaction net-
works, downloaded from IntAct [11]. These organisms were chosen because
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of the size and the quality of their interaction networks. We refer to Table 1
for the quantitative characterizations of the test networks.

Proteins increase by one the co-citation-values of each pairs, formed from
their own interaction partners: i.e., if node a is connected to b and ¢, then a
increases the co-citation of the b, ¢ pair by 1. Therefore those vertices that
have several hundred neighbors contributes to the co-citation of a very high
number of vertex pairs. The highest degree node of the yeast network is 968
(c.f., Table 1), that means that this protein contributes 1 co-citation to each
of (938) = 468, 028 pairs, formed from its neighbors. We believe that these
high-degree, "sticky” proteins with a high number of interacting partners
are not relevant in estimating the co-citation—based functional similarity of
the pairs of their interacting neighbors, therefore we also derived the “max
90” and “max 120" versions of the networks, by deleting all nodes of degree,
larger than or equal to 90 and 120, respectively.

The z-axis of Figure 1 shows the co-citation values for Homo sapiens,
the y-axis shows the ratio of similar pairs/all pairs in all three versions of
the graph: the original one, and in the “max 120” and “max 90” versions of
it. Obviously, filtering out the large degree nodes improves considerably the
functional correspondence of the high co-citation nodes in the graph.

For the numerical analysis of Figure 1, first we filtered out the green
triangle extremities of x coordinate of 104 and 132. After that, the largest
data point corresponds to co-citation n; = 76 on the original green graph, to
ng = 75 on the red “max 120” graph, and to co-citation ng = 70 on the blue
“max 90” graph.

Amongst those nodes, that have at least half the maximum co-citation
(i.e., n1/2, na/2 or n3/2 in the three versions of the graph, respectively), the
ratio of similar pairs were:

e 0.9375 when we consider the “max 90” graph;
e 0.9545 when we consider the “max 120”7 graph;
e 0.8 for the original graph.

Figure S2 in the on-line material shows the co-citation values for Saccha-
romyces cerevisiae.

Figure S3 in the on-line material shows the dependence of the agreement
ratio of the first three blocks of the EC numbers of the “max 90” graph
of the human data set, in the function of the Jaccard coefficients c¢; of the



co-citations (see Definition 2). Figure S4 in the on-line material gives the
analogous graph for the yeast data.

4 Conclusions

Co-citation, as a functional similarity measure in protein-protein interaction
networks was considered, and it was proven, that high co-citation of two pro-
teins with enzymatic functions implies high functional similarity, measured
by EC number coincidences. As an important example we proved, that in
the human interactome, if we filter out the nodes of degree larger than 120,
more than 38 co-citations imply more than 95% of functional coincidence
between the nodes.
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