Large Parallel Machines can be

Extremely Slow for Small Problems

Vince Grolmusz
Department of Computer Science

Eotvos University, Budapest

Keywords: parallel computation, lower bounds, fault tolerant computation

ABSTRACT

We consider concurrent-write PRAMs with a large number of processors of unlimited
computational power and an infinite shared memory. Our adversary chooses a small num-
ber of our processors and gives them a 0-1 input sequence (each chosen processor gets a bit,
and each bit is given to one processor). The chosen processors are required to compute the
PARITY of their input, while the others do not take part in the computation. If at most
g processors are chosen and g < %log logn then we show that computing PARITY needs
g steps in the worst case. On the other hand, there exists an algorithm which computes
PARITY in ¢ steps (for any ¢ < n) in this model, thus our result is sharp. Surprisingly,
if our adversary chooses ezactly ¢ of our processors, then they can compute PARITY in
[¢/2] + 2 steps, and in this case we show that it needs at least [¢/2] steps. Our result
implies that one cannot construct large parallel machines which are efficient when only
a small number of their processors are active. On the other hand, a result of Ajtai and
Ben-Or [1] shows that if we have n input bits which contain at most polylog n 1’s and
polynomially many processors which are all allowed to work, then the PARITY can be

solved in constant time.

Current affiliation: Mathematical Institute of the Hungarian Academy of Sciences;
Redltanoda w. 13-15, H-1058 BUDAPEST HUNGARY

1

1. INTRODUCTION

The PRIORITY concurrent-read concurrent-write parallel random access machine (PRI-
ORITY PRAM) [9] has been proved to be a useful and a strong model of the parallel
computation ([3] [13] [14] [10]). In this model n processors Py, Py, ..., P, are allowed syn-
chronous read/write access to the cells My, My, Ms, ... of an infinite shared memory. Each
step of the computation consists of three phases. In the compute phase each processor
performs local computation. To get more powerful lower bounds we make no assumptions
about the maximal size of the local memory of a processor, or about its instruction set:
an arbitrary amount of local computation is allowed in one step. In the write phase each
processor may write into one cell, and simultaneous writes are allowed. If several proces-
sors write simultaneously into the same cell then this cell will contain the value written
by the processor of lowest index. In the read phase each processor may read from a cell;
simultaneous reads from the same cell are permitted.

We remark that this is the strongest model among the commonly used PRAM models
(4], (131, (7, [10))

It is shown in [5] that if the instruction set of a processor is restricted and the size
of the shared memory is bounded by a polynomial in n then PRIORITY PRAMs and un-
bounded fan-in Boolean circuits are time-depth equivalent (allowing a polynomial blowup
in the number of processors or gates). Thus the circuit lower bounds hold for these re-
stricted PRAMs. One method for proving lower bounds for these unrestricted PRAMs
uses a Ramsey—theoretic approach which allows simplifying the pattern of interprocessor
communication which could otherwise be extremely complex (e.g. [13], [6], [14], [10]).
Applying Ramsey—theorem restricts input to great numbers (i.e. for large numbers to be
sorted in [13]), and cannot be used for binary inputs.

The method of Beame and Hastad [3] works for binary inputs and proves tight
Q(logn/loglogn) lower bound for computing PARITY of n bits on PRIORITY PRAMs
with a polynomial number of processors. The proof is based on the technique of “proba-
bilistic restrictions” ([8], [15], [11]).

It is natural to ask the question: what is the complexity of PARITY if among the n
input bits at most ¢ are allowed to be 1 7 Surprisingly, if ¢ is polylogarithmic in n then

2

- by a result of Ajtai and Ben-Or [1] -there exists a PRAM with a polynomial number of
processors, which solves the PARITY in constant time. The proof shows the existence of
that PRAM using probabilistic methods. (In fact, in [1] the existence of a Boolean circuit
is demonstrated, but this implies the existence of the PRAM by [5]). Thus intuitively a
large machine can solve a small problem very fast when all of its processors are working
on it.

But how fast can it compute the PARITY of ¢ bits if only ¢ of its processors are

allowed to work 7 In order to be more precise, we define

SACK OF PROCESSORS S(n,q):

S(n,q) is @ PRIORITY PRAM with n processors Py, Py, ...,P, and an infinite shared
memory with cells My, My, Ms, ... An input for Sack of Processors S(n,q) consists of ¢ < g
bits. We say that S(n,q) solves a problem P in T steps if the following holds: arbitrarily
chosen ¢' < q processors from Py, Py, ..P, are gwen q’ input bits (one chosen processor
gets exzactly one bit), and after T steps the correct answer appears in the output cell(s).
The processors which are not chosen are not allowed to take part in the computation.

An EXACT SACK OF PROCESSORS S=(n,q) s defined as a Sack of Processors S(n,q)

where ¢'=q (i.e. exactly g processors are chosen every time).

The chosen processors are called live ones. Intuitively, we imagine S(n,q) as a set of
numbered processors, put into a sack. We are allowed to give the processors arbitrarily
complex programs. Then our adversary chooses several processors from our sack, gives
them an input, and the chosen processors are required to compute a function, while the

others are obliged not to take part in the computation.

Note that no live processor knows the identity of the other live processors at the start of

the computation.

The concept of dead and live processors first appeared in [7] (prisoner—type problems).
This model is helpful in designing large PRAMs which are supposed to handle several

tasks simultaneously without any interaction between the processors computing different

3

tasks; for example, suppose that the input bits of a PRAM are colored by three colors, red,
blue and green. The PRAM is required to compute the PARITY of red, the MAJORITY
of blue and the decimal form of green bits. Then the processors, with input bits of the

same color can be considered as chosen processors from a sack.

The SACK of PROCESSORS model can also be useful in building certain types of
fault-tolerant PRAMs (when some of the processors can completely fail while the others
are still supposed to compute some function). In [7] an algorithm in a similar model is used
for simulation of the PRIORITY PRAM by COMMON PRAM, with an equal number of
processors (in COMMON PRAM [12], several processors may attempt to write into the

same cell if only they write the same word — otherwise the entire PRAM stops working).

Intuitively, some problems may be more difficult in this model than in the usual
PRAM model, since the live processors a prior: do not know whom they can work with.
If every live processor knew the identity of the other live processors, then the SACK of

PROCESSORS model is obviously equivalent with g—processor PRIORITY PRAMs, this
implies that computing any function would take only O(log ¢q) steps [2].

It is easy to see that for any n and ¢ there exists a SACK of PROCESSORS which
computes fan-in ¢’ OR in one step. If positive integers can be written into the input cells,
then the Element Distinctness problem ([6], [2]) can also be solved in a constant number of
steps in this model for arbitrary n and ¢, while the COMMON PRAM needs non-constant
time to solve it even when all the processors are allowed to work [14]. If our processors in
sack S(n,q) are only allowed to use the COMMON write-conflict resolution scheme then
computing PARITY needs Q(logn/loglogn) steps, even for ¢ = 2 [7].

We shall see that the following two problems are difficult in the (PRIORITY) SACK
of PROCESSORS model. The first is the well known PARITY function [8] with at most
¢ input bits, and the other is the

RIGHTMOST ONE problem:
b bir q¢" < gq; b, is the bit given to processor P; ; output: iy, iff

,biq, =0, and b;, = 1.

input: b
b

119 Yigs .-

(ESRRLY

The output is required to be written into the first cell of the shared memory. We
would like to obtain sharp results without even additive constants, thus the processors
are allowed to write some redundant information into the first cell as well, but the output

must be well identified.
We note, that computing LEFTMOST ONE needs only 1 step.

The following simple CONFERENCE ALGORITHM solves RIGHTMOST ONE and PAR-
ITY in at most g steps for S(n, ¢) sacks:

CONFERENCE algorithm:

- Before the start of the algorithm each live processor is in a special state, called “write”.

Then

(%) Every live processor in “write” state attempts to write its name (number), its input-
bit and a word (which depends on the problem to be solved) into M. Then every live
processor reads M. The processor in “write” state which has read its own name in

M, ceases to be in “write” state.

- repeat (x).

The processors read and compute the sum of the input bits previously appeared in M, and
add to this sum their own input bit, modulo 2. This sum is the extra “word”, which the
processors attempt to write into M7, when the function to be computed is the PARITY. In
the RIGHTMOST ONE problem processors need not write anything but their signature.

Then after at most ¢ steps the correct answer will be written into the result cell.

After at most ¢ steps of Conference Algorithm each live processor knows the complete
input: if ¢’ < ¢, then after step ¢’ each processor knows the whole input, but they do not
know that they know, so one more step is needed, when the content of cell M; will not
be changed. When ¢' = ¢ then this additional step is not needed. Thus — since the local
computation is costless — they can compute an arbitrary function in the compute phase
of step ¢ + 1 and write the result into cell M. Thus for every function with at most ¢

variables there exists an S(n,¢) which computes it in ¢ + 1 steps.

At the first glance, this algorithm seems to be extremely bad (it uses only one cell

5

for the interprocessor communication). However, we shall prove that it is optimal for our

problems if ¢ is small enough. Our main result is

THEOREM 1. Let S(n,q) be a SACK of PROCESSORS which computes PARITY in
T steps. If ¢ < %log logn then T > q.

The PRAMs with costless local computation can compute any Boolean function in
O(logn) steps, simply by gathering the input-bits into the local memory of a processor
[2]. This also works for SACKS of PROCESSORS: for any function there exists an S(n, q)
which computes the function in O(log n) steps, for any n and ¢ < n.

Our Theorem 1 holds also for the RIGHTMOST ONE problem (Corollary 1). An
algorithm of Chlebus, Diks, Hagerup and Radzik [16] shows that Corollary 1 does not hold
for larger ¢’s: their algorithm works in O(loglogn) steps for all ¢ < n.

Obviously, the EXACT SACKS of PROCESSORS are not weaker than the SACKS
of PROCESSORS. We show in Section 3 that they can compute PARITY (and any other
symmetric Boolean function) in [¢/2] 4 2 steps, and we shall prove there that this is almost

optimal:

THEOREM 2. Let S—(n,q) be an EXACT SACK of PROCESSORS which computes
PARITY in T steps. Suppose, that g < %log logn. Then T > [q/2].

We remark, that PARITY can be computed for all ¢ < n by SACK of PROCESSORS
S(n,q) in expected time O(log ¢), when live processors are chosen in uniform distribution

[17]. This shows an exponential gap between the expected and the worst case running time

of SACK of PROCESSORS- algorithms.

2. PROOF OF THEOREM 1

Suppose that n and ¢ satisfy the conditions of Theorem 1, and let S(n,¢) be a SACK of
PROCESSORS which computes PARITY in 7' steps. We show that 7' > ¢ even when all
the chosen processors get only “1” bits. The proof is an adversary argument. The strategy
will be described with help of partitions of the set of processors. Let R denote the set of
the processors in sack S(n,q): R ={P,Ps,...,P,}. Fort =0,1,...,¢ — 1 we shall define
partitions of R into 3 sets A;, By, Cy. Let Ag = By =0, Co = R. Ayy1,Byyq, and Cyyq
will satisfy Ay C A1, By C Biy1,Cip1 C Cp and | Ay [< t. Our adversary chooses ¢’ < ¢
processors from R and gives each of them an input-bit. The set of the chosen processors

H C R is called a t-vicious choice if

—AtCHCAtUCt,

- each processor in H gets input-bit “17.

By the last property, a t-vicious choice describes not only the set of processors which
are allowed to work, but the inputs given to them. The possible t-vicious choices are
determined by sets A, By, Cy. Obviously, any (t+1)-vicious choice is also a t-vicious choice.
We show that there exists a partition of R into sets A,_1, B;—1,Cy—1 and a (q-1)-vicious
choice such that the result-cell will not contain the correct answer after step -1, thus

S(n,q) needs at least ¢ steps to compute PARITY.

Let P be an element of Cy. We say that processor P t-affects a processor @ # P,) €
Ay U Cy, if there exist t-vicious choices H and H' such that H = H' U {P}, Q € H', and
for choices H and H' the state of processor () is different after step .

Similarly, we say that processor P t-affects cell ¢ if there exist t-vicious choices H and H'
such that H = H' U {P} and for choices H and H' the contents of ¢ differ after step ¢.
The following two conditions are required to hold for A, By,Cy for t =0,1,...,q9 — 1.
Condition 1. There exist no processors P,Q € A; U Cy, such that P t-affects Q).
Condition 2. Every cell is t-affected by at most one element of Cj.

7

Suppose A,_1,By—1 and Cy_; satisfy these conditions and | Cy—; |> 2. Then Condition
2 implies that the result-cell M; is also (q-1)-affected by at most one element of Cy_q,
say P'. Let P" € Cy_y such that P" # P'. Then the choices A,_; and A,_; U {P"} are
(q-1)-vicious, and since P" does not (q-1)-affect result-cell M; the contents of M; is the
same for choices A, and A,—; U {P"}, but the parity of the inputs is different. Thus

S(n,q) cannot compute PARITY in ¢ — 1 steps.

Thus it is enough to find Ag_1, Bg—1,Cy—1, | Cy—1 |> 2 satisfying Conditions 1 and 2. We
give a recursive construction. For Ag = By =), Cy = R Conditions 1 and 2 hold. Suppose
that for some t < ¢ —2, for all t' <t Ay, By, and Cy satisfy Conditions 1 and 2. We shall
define Ay11, Biy1,Ciy1. Let ky =| Cy |. Condition 1 implies that for all t-vicious choice
H. P € H, the state of processor P after step ¢ is independent of the special choice of H.
We define an equivalence relation ~ on Cy. For P,Q) € C; P ~ @ if P and @) attempt to

“s” in step t + 1. Equivalence relation ~ determines equivalence

write into the same cell
classes on C;. Either there exists a class of size at least \/k; or there are more than +/k;

classes.

In the first case let us consider a class Cj | of size at least Vk¢. Let W be the processor

of smallest index (i.e. the highest priority) in C{ ;. Suppose that W attempts to write

into cell ¢ in step t + 1. If our adversary in the t - vicious choices also choose processor

W then the word written into cell ¢ is fixed, since either W succeeds to write into ¢ or

because one of the elements of A; with priority higher than that of W writes there. Let
i =Ci —{W} and Ay = A U{W}

In the second case, when there are more than /k; equivalence classes, let C{,, be an
arbitrary set which contains exactly one common element with each equivalence class, and
let Ay = Ay

In order to get Cy11 we define a directed graph G4, with vertex set 4,4, UCY,,. (Q,P)
is an edge of G4 if for some cell ¢ processor () attempts to write into or reads from cell
c in step t 4 1, where for some H C C{',,, P ¢ H, ¢ has different contents after step ¢ 4 1
for t-vicious choices A¢1y UH U{P} and A,y U H.

8

If cell ¢ has different contents for choices Ay UHU{P} and A, UH after step t+1, then
either P t-affects cell ¢ or P writes into cell ¢ in step ¢t + 1. By Condition 2 every cell is
t-affected by at most one processor, and by the construction of C, | at most one additional
processor may write into a cell of the shared memory in step ¢ + 1, thus each processor in
Ai41UCY, | has out-degree at most 4 in the graph G41. Observe, that processors in A1,
have in-degree 0 in graph G41. Let N(A4+1) denote the set of neighbors of elements of
At1. Let us denote C}, = C}'\y — N(A¢y1). Clearly, |C}L,| > vk —4(t +1) — 1. Now

we would like to find a large subset Ciyy in CY,, which is independent in graph Gq1.

Each vertex in C{/} | has out-degree at most 4, so, at least half of the vertices in C}}, have
at most 8 connecting edges. So, if G4, restricted to this half, is denoted by G}, then

G, can be colored with 9 colors. This implies that there exists in Cj/|; an independent

vertex set Cyyy satistying

1 1
S oM > = . _
(1) [Cual = F5ICH > (\/E At +1) 1).

Obviously, Cy41 U A4 is independent in Gy4.

We state that for A;41, Bi41 and Cy4q Conditions 1 and 2 hold. If P (t+1)-affects but
does not t-affect @ then @) reads a cell which is (t+1)-affected by P in step t+1. In this
case (@, P) is an edge of Gy41, and this is a contradiction, since P and @ are elements
of an independent set of vertices of Gyy;. Suppose that cell ¢ is (t+1)-affected, but not
t-affected by two elements, P and @, of Ci4+1. Then either (P, Q) or (Q, P) or both are
edges of G141, and because of this contradiction Condition 2 holds.

Because of inequality (1), we cannot get stuck if ¢ < %log log n, thus Theorem 1 is proved.

COROLLARY 1. Let S(n,q) be a SACK of PROCESSORS which computes RIGHT-
MOST ONE in step T for q < %log logn. Then T > q.

Proof. The proof of the previous theorem works for this corollary, too. Note that the

largest index of the elements of A; is less than the smallest index of the processors of

9

(. Since Cy_; contains at least 2 processors, ¢ — 1 steps is not enough to compute the

RIGHTMOST ONE live processor. |}

3. FURTHER RESULTS

In this section we examine the EXACT SACKS of PROCESSORS. Intuitively, know-
ing that our adversary will choose exactly ¢ of our processors may help in designing algo-
rithm for SACKS of PROCESSORS. Our results show that knowing the number of pro-
cessors to be chosen halves the time which is necessary and sufficient to compute PARITY
for small enough q’s. The following ES (EXACT SACK) algorithm computes PARITY

(and any other symmetric Boolean function) in [¢/2] + 2 steps.
ES algorithm:

- Before the start of the computation each live processor with input bit i is in state

i-write, for 1 = 0, 1.

(*) Every live processor in i-write state attempts to write its name into cell M;y,. Then
every processor with input-bit i reads cell M;1. The processors in i-write state, which

have read their own name in M;;1, cease to be in i-write state.

- Each live processor repeats () until in two consecutive steps the contents of My or

M, does not get changed.

If processor P has input-bit ¢ and the contents of M;;; remains unchanged in step ¢ + 1
then all the processors with input-bit ¢ have written their name into M;;;, thus P has
read the names of all the processors, which have input . So P can compute the parity of

the input since it knows the number of the 1 — 2 bits, and writes it into the result-cell.

Clearly, in [¢/2] + 1 steps a repetition will occur either in M; or in Mj, since either the
number of 1’s or the number of 0’s is less or equal to [¢/2]. One more step is needed to
write the correct answer into the result-cell. Thus in [¢/2] + 2 steps PARITY (and any

other symmetric Boolean function) can be computed with the ES algorithm on an EXACT

10

SACK of PROCESSORS.
However, knowing that the adversary will choose exactly ¢ processors does not help in

finding the RIGHTMOST ONE 1-bit.

COROLLARY 2. Any EXACT SACK of PROCESSORS S-(n,q), where ¢ <
%log logn, needs at least ¢ steps to solve the RIGHTMOST ONE problem.

PROOQOF. The proof of Corollary 1 can easily be modified such that the t-vicious choices

have size ¢. In C,_1 at least ¢ — |A,_1] + 1 processors are needed. [

Proof of Theorem 2. The proof is similar to the proof of Theorem 1, but it is a little
bit more complicated, and some definitions should be changed.
Let S=(n,q), ¢ < %log logn, be an EXACT SACK of PROCESSORS which solves PAR-
ITY in T steps, Let R denote the set of n processors of S=(n,q). Fort =0,1,2,...,[¢/2] -1
we define partitions of R into 4 sets A?, A, B, C;. The following relations will be satisfied:
AY C AV, Al C Al,,, By C Biy1,Cuq1 C Cy, |AY < t, |A?| < t. The adversary makes
a t-vicious choice H C R if

-AYUAl cHcCAUAlUC,

-|H| =4

A legal input o for t-vicious choice H is a sequence of input bits given to processors of H
such that processors of A? get bit 0, processors of A} get 1, and processors of H N Cy may
get any bit.

We say that processor P € Cy t-affects processor Q € A% U Al U Cy, Q # P if there exists
a t-vicious choice H such that P,Q) € H, and there exist
- either legal inputs @ and # such that « and 3 differ only in bit given to processor P,
and the state of @) for inputs « and § is different after step t;
- or legal input « such that the state of () after step t is different in case of choice H
and input « and choice H — {P} and input «', where o' is defined such that the input

of processors of H — {P} is the same as in a.

Remark. The choice H — {P} is illegal in the previous definition. Our extremely vicious

11

adversary may make illegal choices, but in this case our EXACT SACK of PROCESSORS
S—(n,q) is not required to perform a correct computation. But, if @} has different states

in step t + 1, we may say that P t-affects ().

Similarly, we say that processor P € C t-affects cell ¢ of the shared memory if there exists

t-vicious choice H, where P € H and there exist

- either legal inputs @ and f such that « and 3 differ only in bit given to processor P,

and the contents of ¢ is different for inputs o and 3 after step ¢;

- or legal input « such that the contents of ¢ after step ¢ is different in case of choice
H, input a and in case of choice H — {P} and input &', where in o' the input of

processors of H — {P} is the same as in «.
Conditions 1 and 2 are required to hold for A? Al B;,C; where t =0,1,2,...,[¢/2] — 1.

Condition 1. There exist no processors P and () such that P t-affects Q;

Condition 2. Every cell is t-affected by at most one element of Cj.

Suppose Aﬁq/z]—pA[lqﬂ]—pB[q/2]—17C[q/2]—1 satisfy these conditions and | Cly/91—1 [> ¢.
Let P,Q € Cig/31-1, P # Q, and let H be a ([q/2]-1)-vicious choice such that P,Q € H.
By Condition 2, result cell M; is ([¢/2] — 1)-affected by at most one processor, say Q.
Then for legal inputs a and 3, where a and g differ only in bit given to processor P, the
contents of M; will be the same, although the parity of a and [is different. This implies

that S=(n,q) needs at least [¢/2] steps to compute PARITY.

We give a recursive construction for A%, A}, By, Cy. Clearly, Al = A =By =0, Co = R
satisfy the requirements. Suppose that A%, A}, B; and C, satisfy Conditions 1 and 2, and
| C¢ |= k¢. Then for any t-vicious choice the state of each processor after finishing step
t depends only on its input bit. Let = be an equivalence relation on C; such that for
P Q) eCy, P=(Q if the input bit of P and @) is 1 then P and () attempt to write into the
same cell of the memory in step t + 1. There exists either an equivalence class of at least

v k; elements, or there are more than v/k; classes.
2

12

In the first case let C},, be a class with at least \/k; elements and let W be the processor
of the smallest index in C},,. Let C7F, = Cf, —{W}, and A}, = A; U{W}.

In the second case let C7Y, be an arbitrary set which contains exactly one common element

with every equivalence class, and let Aj , = Aj.

Now we define a new equivalence relation ~ on C7¥,. For P,Q € C}}, P ~ @ if the input

of P and () is 0 then they attempt to write into the same cell in step ¢t + 1. Either there
1 1

exists an equivalence class Cj, | of at least k + 1 processors, or there are at least k/ — 1

equivalence classes.

In the first case let X be the processor of the smallest index in Cy . Let A}, ; = A} U{X}
and Cf!,, = C{,, — {X}.

In the second case let C{!,; be a set which contains exactly one common element with

every equivalence classes, and let A9+1 = AY.

1
The size of C{/,, is at least k — 1 in both cases. In order to get Cyy, we define a
directed graph G4 on vertex set Vigy = A}, UA; UCY, . For P,Q € V41 P # Q (Q,P)

is an edge of G4 if there exist

- a t-vicious choice H = A}, | UA; | UH', where H' C C};
- and inputs « and (3 for processors of H, such that the input of processors in A{+1 is
j for 3 = 0,1, and « and § differ only in bit given to P;
- and a cell ¢, such that for choice H and input o) attempts to write into or reads
from cell ¢ in step t + 1, where ¢ has different contents in step t + 1
a) either for inputs a and f3,
b) or for choice H with input « and choice H — { P} with input o', where in o' each

processor of H — {P} gets the same input as in «.

By Condition 1, for any t-vicious choice, each processor has two different states in the
writing, and just before the reading phase of step ¢t + 1. These states depend only on the
input bit of the processors. Thus each processor may attempt to write into at most two

cells and may read from at most two cells of the shared memory in step ¢t + 1. Thus for

13

each () there exists at most 4 different cells ¢ in the definition of Gy4;. For any t-vicious
choice, any cell is t-affected by at most one processor. Cell ¢ in definition of G,y may
have different contents if either P t-affects cell ¢, or for some inputs, P writes into ¢ in
step ¢t 4+ 1. If we consider only choices H = A}, ; UAj,, UH', H' C C},,, then for any
legal inputs any cell may be written into by at most two additional processors. Thus in
graph G4, the out-degree of each node is at most 12. We remark that the in-degree of
the vertices of A}, ; U Aj,, is 0.

Let N(Ai,,) denote the set of neighbors of elements of Al , in graph Gi1, for
i = 0,1, respectively. Let us denote by Cy{, = C}'.; — (N(A{,,) U N(A4{,,)). Clearly,
Ci | > kt% —24(t 4 1) — 1. Now we would like to find a large subset Cyyy in C{,, which
is independent in graph Gy;. Each vertex in C{/|| has out-degree at most 12, so, at least
half of the vertices in C}}, have at most 24 connecting edges. So, if G4, restricted to
this half is denoted by G| then G}, can be colored with 25 colors. This implies that in

{11 there exists an independent vertex set Cyy; satisfying

1 L(h .
(2) Cuaal 2 == [0 = =5 (b — 24t +1) 1),
Let By+1 = R — (Ag—i—l U A%—i—l U Cy41). This completes the definition of the four-partition
of set R in step ¢t + 1.

We show now that Conditions 1 and 2 hold. It is easy to see that if processor P
(t+1)-affects but does not t-affect processor @ then (@, P) is an edge of G4, and this
is not possible when P and @) are elements of a (t41)-vicious choice. This implies that
Condition 1 holds. Similarly, if P and @ are elements of a (t+1)-vicious choice, then they
cannot (t+1)-affect any cell ¢ simultaneously, because in this case (P, Q) or (@, P) were
edges of Gy+1. Thus Condition 2 also holds. Because of (2), we cannot get stuck until
t < %log log n. This completes the proof of Theorem 2. I

14

4. OPEN PROBLEMS

We have shown that for small ¢’s the processors of a sack S(n,¢) or S=(n,¢) cannot
communicate effectively and because of this, computing some simple functions needs long
time, relative to ¢. In [16] an algorithm is shown which solves the RIGHTMOST ONE
problem for any ¢ < n in O(loglogn) time. However, this algorithm does not work for
computing PARITY, in this case we have only the trivial clogn upper bound. It would
be interesting to give a better SACK of PROCESSORS algorithm for PARITY.

An interesting question, related to our result, is the following: can the processors
help each other, or, more precisely: given n processors and n colored input-bits. The
parity of the bits of each color should be computed and written into the result cells of the
appropriate color. There exist n/q colors and ¢ bits of each color. There are n/q different
result cells, one for each color. Our adversary gives the processors the colored input bits.

If the processors with input bit of color ¢ have not access to cells, written by processors
with input bit of color j, ¢ # j, then computing PARITY of each color needs [¢/2] steps
by our Theorem 2. But how fast can they compute PARITY if they have access to cells,

written by processors of different color?

Acknowledgements

I thank Miklos Simonouvits for many stimulating discussions of the material presented here,

and Prabhakar Ragde for helpful comments.

15

REFERENCES

1]

[10]

[11]

[12]

[13]

Ajtai, M., Ben-Or, M.: A Theorem on Probabilistic Constant Depth Computa-
tion. Proc. 16" Annual ACM Symposium on Theory of Computing, 1984, pp.
471-474.

Beame, P.: Lower Bounds in Parallel Machine Computation, Ph. D. Thesis,
University of Toronto, 1986.

Beame, P., Hastad, J.: Optimal Bounds for Decision Problems on the CRCW
PRAM. Proc. 19" Annual ACM Symposium on Theory of Computing, 1987
Cook, S.A., Dwork, C., Reischuk, R.: Upper and Lower Bounds for Parallel
Random Access Machines Without Simultaneous Writes, STAM J. Computing,
vol 15, no. 1, 1986. pp. 87-97.

Stockmeyer, L., Vishkin, U.: Simulation of Parallel Random Access Machines by
Circuits, SIAM J. Comput. vol 14, No. 3. pp. 688-708

Fich, F.E., Meyer auf der Heide, F. Wigderson, A.: One, Two, Three,... Infinity:
Lower Bounds for Parallel Computation. Proc. 17* Annual ACM Symposium
on Theory of Computing, 1985, pp. 48-58.

Fich, F.E., Ragde, P., Wigderson, A.: Simulations Among Concurrent - Write
PRAMs, Algorithmica 3, No. 1, 1988, pp. 43-52.

Furst, M., Saxe, J.B., Sipser, M.: Parity, Circuits, and the Polynomial Time
Hierarchy. Math. Systems Theory, 17, pp. 13-27, 1984.

Goldschlager, L.: A Unified Approach to Models of Synchronous Parallel Ma-
chines. J. ACM vol 29, No. 4, 1982, pp. 1073-1086.

Grolmusz, V., Ragde, P.: Incomparability in Parallel Computation. Proc. 27"
Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 89-98.
Hastad, J.: Almost Optimal Lower Bounds for Small Depth Circuits. Proc. 18"
Annual ACM Symposium on Theory of Computing, 1986, pp. 6-20.

Kucera, L. Parallel Computation and Conflicts in Memory Access, Information
Processing Letters, vol. 14, No. 2, 1982, pp. 93-96

Meyer auf der Heide, F., Wigderson, A.: The Complexity of Parallel Sorting.
SIAM Journal of Computing, vol. 16, pp. 100-108.

16

[14] Ragde, P., Steiger, W., Szemerédi, E., Wigderson, A.: The Parallel Complexity
of Element Distinctness is (y/logn), STAM Journal of Discrete Mathematics, vol
1, No. 3, pp. 399-410

[15] Yao, A.: Separating the Polynomial-Time Hierarchy by Oracles. Proc. 25'%
Annual IEEE Symposium on Foundations of Computer Science, 1985, 1- 10.

[16] Chlebus, B.S., Diks, K., Hagerup, T., Radzik T.: Efficient Simulations between
Concurrent-Write PRAM Models, Mathematical Foundations of Computer Sci-
ence, 1988.

[17] Grolmusz, V.: On the Complexity of Parallel Algorithms, Ph. D. Thesis, E6tvos

University-Hungarian Academy of Sciences, 1988 (in Hungarian).

17

