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Abstract

In a previous work [4] we found a relation between the ranks of co-
diagonal matrices (matrices with 0’s in their diagonal and non-zeroes
elsewhere) and the quality of explicit Ramsey-graph constructions.
We also gave there a construction based on the BBR-polynomial of
Barrington, Beigel and Rudich [1]. In the present work we give another
construction for low-rank co-diagonal matrices, based on a modular
sieve formula.
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1 Introduction

Constructing large graphs with small homogeneous vertex sets is a long-
standing challenge for combinatorists. The seminal paper of Erdés [2] proved
the existence of an O(2/%)-vertex graph without a #-vertex clique or a {-
vertex independent set, but the best construction to date — due to Frankl
and Wilson [3] — gives a graph with
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vertices. We proved matching bounds in [5], with a method generalizable to
explicit Ramsey-colorings with more than two colors.

In the paper [4] we have found a relation between low-rank co-diagonal
matrices and Ramsey-graphs.

Definition 1 ([4]) Let R be a ring and let n be a positive integer. We
say, that the n x n matric A = {a;;} is a co-diagonal matriz over R, if
ai; € R, 1,5 =1,2,....n and a; = 0,a;; #0, forall2,7 =1,2,...,n,1#J.

We say, that A s an upper co-triangle matriz over R, if a;; € R, 1,5 =
1,2,...,n and a; = 0,a;; # 0, forall1 <1 < j < n. A s a lower co-
triangle matriz over R, ifa;; € R, 1,5 =1,2,...,n and a;; = 0,a;; # 0, for
alll1 <5 <t < n. A matriz is co-triangle, if it is either lower- or upper
co-triangle.

To formalize the connection between Ramsey-graphs and matrices, we
also need the definition of the rank of a matrix over a ring; (see e.g., [6]).

Definition 2 Let R be a ring and let n be a positive integer. We say, that
the n X n matrix A over R has rank 0, if all of the elements of A are 0.
Otherwise, the rank over the ring R of matriz A is the smallest r, such that
A can be written as

A=BC

over R, where B is an n X r and C is an v X n matriz. The rank of A over

R is denoted by rankp(A).

The following theorem establishes the connection between the low-rank
co-triangle (or co-diagonal) matrices and Ramsey-graphs; the proof of that
theorem is constructive: that means, that if a matrix is given constructively,
then the Ramsey-graph is also given constructively.

Theorem 3 ([4]) Let A= {a;;} be an nxn co-triangle matriz over R = Zg,
with v = ranky,(A). Then there exists an n-vertex graph G, containing
neither a clique of size r 4+ 2 nor an anti-clique of size

r+1
2.
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In [4] we have given an explicit construction for a rankgz(A) <

2eV/losnlloglogn)_yatrix of size n X n, using the BBR-polynomial of Barring-
ton, Beigel and Rudich [1]. An easy computation shows that this matrix-
construction together with Theorem 3 imply an explicit Ramsey-graph with
homogeneous sets of the same logarithmic order of magnitude as the result
of Frankl and Wilson [3]. Now we give another construction for low mod
6 rank co-diagonal matrices using modular sieves. This construction is our
main result here.

2  Our Construction

2.1 A logarithmic-rank co-diagonal matrix

The first step in the construction is a co-diagonal matrix suitable for large
moduli. The next step is the modification of that construction for small
composite moduli, say 6. The basic idea is to construct an n X n co-diagonal
matrix A by a sum of a small number of rank-1 0-1 matrices.

Then A will have a small rank, because of the following easy lemma from

[4]:

Lemma 4 ([4]) Let R be a ring and let A and A’ be two n X n matrices.
Then rankp(A + A’) < rankg(A) + rankg(A’).

O

Consequently, if we get a co-diagonal matrix as a sum of — say — z rank-1
matrices, then its rank is at most z.

For simplicity, we identify these rank-1 0-1 matrices by the positions of
the entries, containing 1. For example, W = {(i.7): ¢ € I,j € J} denotes an
n x n 0-1 matrix {w;;}, where w;; =1 < i€ [,j € L.

First, let us see a construction for a 2[log(n+1)]-rank co-diagonal matrix.
Let us consider the following n x n rank-1 matrices:

U={(,7):1:=0,5: =1}; Vi ={(i,5) 14, = 1,5, = 0}

where 7, and j; denotes the ¢ bit in the binary form of 1 < ¢ < n and
1 <3 < n, respectively, and let

[log(n+1)]
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Clearly, both U; and V; are rank-1 0-1 matrices, their combined number
is 2[log(n 4+ 1)], and the 1’s in them cover all the off-diagonal elements of A.

Consequently, the rank of A is at most 2[log(n + 1)]. It is also obvious,
that entry a;; of matrix A is covered Hy(1,j)-times, where Hy(z,7) stands
for the Hamming-distance of the binary forms of : and j. Consequently, the
entries of A are less than or equal to [log(n + 1)].

For our results, we need a somewhat different initial cover. For the defi-
nition of this cover, let us represent the indices not in binary, but rather in
N-ary form, for N = [logn|. That is, for 1 <¢,5 <n, let ¢;, j; be the N-ary
digits of ¢ and j, respectively. Let g = [logy(n 4 1)]. Then let us define for
t=1,2,...,9,and { =0,1,....N —1:

Y

Uf = {(lvj) vig =L, gy # L},

and let

where N denotes the set {0,1,..., N — 1}. Then any non-diagonal element
will be covered by Hy(i,7)-times, where Hy(¢,7) stands for the Hamming-
distance of the N-ary forms of ¢ and j, that is, at most ¢g-times.

Clearly, for large enough n, g > 6, so the cover by the sets U} will
not define a co-diagonal matrix modulo 6; the entries, where the Hamming-
distance is a multiple of 6, will be covered only 0 times mod 6.

One possible remedy to this problem is getting rid of the multiple covers,
using a sieve-formula.

Let us recall, that we identify the rank-1 0-1 matrices by the positions
of the entries, containing 1. Consequently, for any I C {1,2,...,¢}, and
for any ({1,0z,...,41) € N matrix MNees ULt denotes the rank-1 0-1 matrix
with 1’s exactly in the positions (¢, 7), where for all t € I: 1, = {;, # j; are
satisfied. Now let us consider the following sieve:

B= Y (-pH S NUf |- (1)

Ic{1,2,...9} (f17f2,...,f|]|)€Mm tel

Note, that B = {b;;} is an n X n matrix.
If the entries of A are denoted by a;;, then for any 2 # j if a;; = s, that



is, the position (7, ;) is covered s-times, then

S G R R

and b; = 0, for all ¢’s. So, clearly, B is a special co-diagonal matrix of the
form

J—1,

where J is the all-1, and [ is the identity-matrix of size n x n. However, the
rank of B is too high for any use in Theorem 3.

2.2 The Modular Sieve

Now we will cut the tail of the sieve of (1), getting a sum-matrix of low rank
modulo 6. The method is similar to the construction of the BBR polynomial

[1].

Let p be the smallest integer that 2 > /g, and let v be the smallest
integer that 3" > ,/g.

Let us consider now the following two n X n matrices, defined with sieves:

C = Z (_1)|I|+1 Z ﬂUft | 3
Ici{lfllyiyéﬂyg} (Q,Q,...,zul)emlﬂ tel

and

b=y ym| x| N
Ici{}liéi’g} (Q,Q,...,zul)emlﬂ tel

Now we can state our main Lemma:

Lemma 5 The matriz 3C + 4D is co-diagonal modulo 6, and its rank over

Zs is exp (O(v/lognloglogn)).

Proof.

For the entries ¢;; of the matrix ' we can give a similar formula that was
given in (2). Again, let 7 and j be chosen so that a;; = s, then there are two
cases.



Case 1: s < 2¢.

()feafer

In Case 1 there are no problems, for an arbitrary modulus, ¢;; is non-0.

(-Gl

At this point we need a simple Lemma, its proof can be found e.g. in [5].

Case 2: s > 2H,

Lemma 6 Let p be a prime, k, j, ¢ non-negative integers, ¢ > 1. For any

k<p5, . .
(7)) wan
O

Now we deal with Case 2. Let s’ = s mod 2*, that is, 0 < s' < 2 ' = 3
(mod 2*). From (6):

cij = (8’1/) = (‘;) +o4 (j) (mod 2), (7)

That means that ¢;; =0 (mod 2) if s = Hy(¢,7) is a multiple of 2# and
it is 1 modulo 2 otherwise.

An analogous proof shows for D = {d;;} of (4) that d;; =0 (mod 3) if
s = Hn(i,7) is a multiple of 3" and it is 1 modulo 3 otherwise.

Note, that 2#3” > g = [logx(n + 1)], that is, it is larger than the maxi-
mum Hamming-distance between any ¢ and j, for any fixed ¢ # j. So ¢;; =0
(mod 2) and d;; = 0 (mod 3) cannot hold simultaneously. Consequently,
the matrix 3C' 4+ 4D will be co-diagonal modulo 6, and its rank is at most
the combined number of the rank-1 matrices in equations (3) and (4), that

is exp (v/log nloglogn).O
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