A Note on Explicit Ramsey Graphs and Modular Sieves

Vince Grolmusz
Department of Computer Science
Eötvös University, H-1117 Budapest
HUNGARY
E-mail: grolmusz@cs.elte.hu

Abstract

In a previous work [4] we found a relation between the ranks of codiagonal matrices (matrices with 0's in their diagonal and non-zeroes elsewhere) and the quality of explicit Ramsey-graph constructions. We also gave there a construction based on the BBR-polynomial of Barrington, Beigel and Rudich [1]. In the present work we give another construction for low-rank co-diagonal matrices, based on a modular sieve formula.

Keywords: composite modulus, explicit Ramsey-graph constructions, matrices over rings, co-diagonal matrices, modular sieve

1 Introduction

Constructing large graphs with small homogeneous vertex sets is a longstanding challenge for combinatorists. The seminal paper of Erdős [2] proved the existence of an $O\left(2^{t / 2}\right)$-vertex graph without a t-vertex clique or a t vertex independent set, but the best construction to date - due to Frankl and Wilson [3] - gives a graph with

$$
\exp \left(\left(\frac{1}{4}-\varepsilon\right) \frac{(\log t)^{2}}{\log \log t}\right)
$$

vertices. We proved matching bounds in [5], with a method generalizable to explicit Ramsey-colorings with more than two colors.

In the paper [4] we have found a relation between low-rank co-diagonal matrices and Ramsey-graphs.

Definition 1 ([4]) Let R be a ring and let n be a positive integer. We say, that the $n \times n$ matrix $A=\left\{a_{i j}\right\}$ is a co-diagonal matrix over R, if $a_{i j} \in R, i, j=1,2, \ldots, n$ and $a_{i i}=0, a_{i j} \neq 0$, for all $i, j=1,2, \ldots, n, i \neq j$.

We say, that A is an upper co-triangle matrix over R, if $a_{i j} \in R, i, j=$ $1,2, \ldots, n$ and $a_{i i}=0, a_{i j} \neq 0$, for all $1 \leq i<j \leq n$. A is a lower cotriangle matrix over R, if $a_{i j} \in R, i, j=1,2, \ldots, n$ and $a_{i i}=0, a_{i j} \neq 0$, for all $1 \leq j<i \leq n$. A matrix is co-triangle, if it is either lower- or upper co-triangle.

To formalize the connection between Ramsey-graphs and matrices, we also need the definition of the rank of a matrix over a ring; (see e.g., [6]).

Definition 2 Let R be a ring and let n be a positive integer. We say, that the $n \times n$ matrix A over R has rank 0 , if all of the elements of A are 0 . Otherwise, the rank over the ring R of matrix A is the smallest r, such that A can be written as

$$
A=B C
$$

over R, where B is an $n \times r$ and C is an $r \times n$ matrix. The rank of A over R is denoted by $\operatorname{rank}_{R}(A)$.

The following theorem establishes the connection between the low-rank co-triangle (or co-diagonal) matrices and Ramsey-graphs; the proof of that theorem is constructive: that means, that if a matrix is given constructively, then the Ramsey-graph is also given constructively.

Theorem 3 ([4]) Let $A=\left\{a_{i j}\right\}$ be an $n \times n$ co-triangle matrix over $R=Z_{6}$, with $r=\operatorname{rank}_{Z_{6}}(A)$. Then there exists an n-vertex graph G, containing neither a clique of size $r+2$ nor an anti-clique of size

$$
\binom{r+1}{2}+2
$$

In [4] we have given an explicit construction for a $\operatorname{rank}_{Z_{6}}(A) \leq$ $2^{c \sqrt{\log n(\log \log n)}}$ - matrix of size $n \times n$, using the BBR-polynomial of Barrington, Beigel and Rudich [1]. An easy computation shows that this matrixconstruction together with Theorem 3 imply an explicit Ramsey-graph with homogeneous sets of the same logarithmic order of magnitude as the result of Frankl and Wilson [3]. Now we give another construction for low mod 6 rank co-diagonal matrices using modular sieves. This construction is our main result here.

2 Our Construction

2.1 A logarithmic-rank co-diagonal matrix

The first step in the construction is a co-diagonal matrix suitable for large moduli. The next step is the modification of that construction for small composite moduli, say 6 . The basic idea is to construct an $n \times n$ co-diagonal matrix A by a sum of a small number of rank-1 0-1 matrices.

Then A will have a small rank, because of the following easy lemma from [4]:

Lemma 4 ([4]) Let R be a ring and let A and A^{\prime} be two $n \times n$ matrices. Then $\operatorname{rank}_{R}\left(A+A^{\prime}\right) \leq \operatorname{rank}_{R}(A)+\operatorname{rank}_{R}\left(A^{\prime}\right)$.

Consequently, if we get a co-diagonal matrix as a sum of - say $-z$ rank-1 matrices, then its rank is at most z.

For simplicity, we identify these rank-1 0-1 matrices by the positions of the entries, containing 1 . For example, $W=\{(i . j): i \in I, j \in J\}$ denotes an $n \times n 0$-1 matrix $\left\{w_{i j}\right\}$, where $w_{i j}=1 \Longleftrightarrow i \in I, j \in J$.

First, let us see a construction for a $2\lceil\log (n+1)\rceil$-rank co-diagonal matrix. Let us consider the following $n \times n$ rank- 1 matrices:

$$
U_{t}=\left\{(i, j): i_{t}=0, j_{t}=1\right\} ; \quad V_{t}=\left\{(i, j): i_{t}=1, j_{t}=0\right\}
$$

where i_{t} and j_{t} denotes the $t^{\text {th }}$ bit in the binary form of $1 \leq i \leq n$ and $1 \leq j \leq n$, respectively, and let

$$
A=\sum_{t=1}^{\lceil\log (n+1)\rceil}\left(U_{t}+V_{t}\right) .
$$

Clearly, both U_{t} and V_{t} are rank-1 0-1 matrices, their combined number is $2\lceil\log (n+1)\rceil$, and the 1 's in them cover all the off-diagonal elements of A.

Consequently, the rank of A is at most $2\lceil\log (n+1)\rceil$. It is also obvious, that entry $a_{i j}$ of matrix A is covered $H_{2}(i, j)$-times, where $H_{2}(i, j)$ stands for the Hamming-distance of the binary forms of i and j. Consequently, the entries of A are less than or equal to $\lceil\log (n+1)\rceil$.

For our results, we need a somewhat different initial cover. For the definition of this cover, let us represent the indices not in binary, but rather in N-ary form, for $N=\lceil\log n\rceil$. That is, for $1 \leq i, j \leq n$, let i_{t}, j_{t} be the N-ary digits of i and j, respectively. Let $g=\left\lceil\log _{N}(n+1)\right\rceil$. Then let us define for $t=1,2, \ldots, g$, and $\ell=0,1, \ldots, N-1$:

$$
U_{t}^{\ell}=\left\{(i, j): i_{t}=\ell, j_{t} \neq \ell\right\},
$$

and let

$$
\hat{A}=\sum_{\substack{t \in\{1,2, \ldots, s\} \\ \ell \in \underline{N}}} U_{t}^{\ell},
$$

where \underline{N} denotes the set $\{0,1, \ldots, N-1\}$. Then any non-diagonal element will be covered by $H_{N}(i, j)$-times, where $H_{N}(i, j)$ stands for the Hammingdistance of the N -ary forms of i and j, that is, at most g-times.

Clearly, for large enough $n, g \geq 6$, so the cover by the sets U_{t}^{ℓ} will not define a co-diagonal matrix modulo 6; the entries, where the Hammingdistance is a multiple of 6 , will be covered only 0 times $\bmod 6$.

One possible remedy to this problem is getting rid of the multiple covers, using a sieve-formula.

Let us recall, that we identify the rank-1 0-1 matrices by the positions of the entries, containing 1. Consequently, for any $I \subset\{1,2, \ldots, g\}$, and for any $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{|I|}\right) \in \underline{N}^{|I|}$, matrix $\bigcap_{t \in I} U_{t}^{\ell_{t}}$ denotes the rank-1 0-1 matrix with 1's exactly in the positions (i, j), where for all $t \in I: i_{t}=\ell_{t} \neq j_{t}$ are satisfied. Now let us consider the following sieve:

$$
\begin{equation*}
B=\sum_{I \subset\{1,2, \ldots, g\}}(-1)^{|I|+1}\left(\sum_{\left(\ell_{1}, \ell_{2}, \ldots, \ell_{|I|}\right) \in \underline{N}^{|I|}} \bigcap_{t \in I} U_{t}^{\ell_{t}}\right) . \tag{1}
\end{equation*}
$$

Note, that $B=\left\{b_{i j}\right\}$ is an $n \times n$ matrix.
If the entries of \hat{A} are denoted by $\hat{a}_{i j}$, then for any $i \neq j$ if $\hat{a}_{i j}=s$, that
is, the position (i, j) is covered s-times, then

$$
\begin{equation*}
b_{i j}=\binom{s}{1}-\binom{s}{2}+\cdots \pm\binom{ s}{s}=1, \tag{2}
\end{equation*}
$$

and $b_{i i}=0$, for all i 's. So, clearly, B is a special co-diagonal matrix of the form

$$
J-I,
$$

where J is the all-1, and I is the identity-matrix of size $n \times n$. However, the rank of B is too high for any use in Theorem 3 .

2.2 The Modular Sieve

Now we will cut the tail of the sieve of (1), getting a sum-matrix of low rank modulo 6 . The method is similar to the construction of the BBR polynomial [1].

Let μ be the smallest integer that $2^{\mu}>\sqrt{g}$, and let ν be the smallest integer that $3^{\nu}>\sqrt{g}$.

Let us consider now the following two $n \times n$ matrices, defined with sieves:

$$
\begin{equation*}
C=\sum_{\substack{I \subset\{1,2, \ldots, g\} \\|I|<2 \mu^{\prime}}}(-1)^{|I|+1}\left(\sum_{\substack{\left(\ell_{1}, \ell_{2}, \ldots, \ell_{|I|}\right) \in \underline{N}^{|I|}}} \bigcap_{t \in I} U_{t}^{\ell_{t}}\right), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\sum_{\substack{I \subset\{1,2, \ldots, 9\} \\|I|<3 y^{\prime}}}(-1)^{|I|+1}\left(\sum_{\substack{\left(\ell_{1}, \ell_{2}, \ldots, \ell_{|I|}\right) \in \underline{N}^{|I|}}} \bigcap_{t \in I} U_{t}^{\ell_{t}}\right) . \tag{4}
\end{equation*}
$$

Now we can state our main Lemma:
Lemma 5 The matrix $3 C+4 D$ is co-diagonal modulo 6, and its rank over Z_{6} is $\exp (O(\sqrt{\log n \log \log n}))$.

Proof.
For the entries $c_{i j}$ of the matrix C we can give a similar formula that was given in (2). Again, let i and j be chosen so that $\hat{a}_{i j}=s$, then there are two cases.

Case 1: $s<2^{\mu}$.

$$
\begin{equation*}
c_{i j}=\binom{s}{1}-\binom{s}{2}+\cdots \pm\binom{ s}{s}=1 \tag{5}
\end{equation*}
$$

In Case 1 there are no problems, for an arbitrary modulus, $c_{i j}$ is non- 0 .
Case 2: $s \geq 2^{\mu}$.

$$
\begin{equation*}
c_{i j}=\binom{s}{1}-\binom{s}{2}+\cdots+\binom{s}{2^{\mu}-1} \tag{6}
\end{equation*}
$$

At this point we need a simple Lemma, its proof can be found e.g. in [5].
Lemma 6 Let p be a prime, k, j, e non-negative integers, $e \geq 1$. For any $k<p^{e}$,

$$
\binom{j+p^{e}}{k} \equiv\binom{j}{k} \quad(\bmod p)
$$

Now we deal with Case 2. Let $s^{\prime}=s \bmod 2^{\mu}$, that is, $0 \leq s^{\prime}<2^{\mu}, s^{\prime} \equiv s$ $\left(\bmod 2^{\mu}\right)$. From (6):

$$
\begin{equation*}
c_{i j} \equiv\binom{s^{\prime}}{1}-\binom{s^{\prime}}{2}+\cdots+\binom{s^{\prime}}{s^{\prime}} \quad(\bmod 2) \tag{7}
\end{equation*}
$$

That means that $c_{i j} \equiv 0(\bmod 2)$ if $s=H_{N}(i, j)$ is a multiple of 2^{μ} and it is 1 modulo 2 otherwise.

An analogous proof shows for $D=\left\{d_{i j}\right\}$ of (4) that $d_{i j} \equiv 0(\bmod 3)$ if $s=H_{N}(i, j)$ is a multiple of 3^{ν} and it is 1 modulo 3 otherwise.

Note, that $2^{\mu} 3^{\nu}>g=\left\lceil\log _{N}(n+1)\right\rceil$, that is, it is larger than the maximum Hamming-distance between any i and j, for any fixed $i \neq j$. So $c_{i j} \equiv 0$ $(\bmod 2)$ and $d_{i j} \equiv 0(\bmod 3)$ cannot hold simultaneously. Consequently, the matrix $3 C+4 D$ will be co-diagonal modulo 6 , and its rank is at most the combined number of the rank-1 matrices in equations (3) and (4), that is $\exp (\sqrt{\log n \log \log n})$.

References

[1] D. A. M. Barrington, R. Beigel, and S. Rudich. Representing Boolean functions as polynomials modulo composite numbers. Comput. Complexity, 4:367-382, 1994. Appeared also in Proc. 24th Ann. ACM Symp. Theor. Comput., 1992.
[2] P. Erdős. Some remarks on the theory of graphs. Bull. A. M. S., 53:292294, 1947.
[3] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combinatorica, 1(4):357-368, 1981.
[4] V. Grolmusz. Low-rank co-diagonal matrices and Ramsey graphs. The Electronic Journal of Combinatorics, 7:R15, 2000. www.combinatorics.org.
[5] V. Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20:73-88, 2000.
[6] C. Meinel and S. Waack. The Möbius function, variations ranks, and $\theta(n)$-bounds on the modular communication complexity of the undirected graph connectivity problem. Technical Report TR94-022, ECCC, 1994.

