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Abstract

In a previous work [4] we found a relation between the ranks of co-

diagonal matrices (matrices with 0's in their diagonal and non-zeroes

elsewhere) and the quality of explicit Ramsey-graph constructions.

We also gave there a construction based on the BBR-polynomial of

Barrington, Beigel and Rudich [1]. In the present work we give another

construction for low-rank co-diagonal matrices, based on a modular

sieve formula.
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1 Introduction

Constructing large graphs with small homogeneous vertex sets is a long-

standing challenge for combinatorists. The seminal paper of Erd}os [2] proved

the existence of an O(2t=2)-vertex graph without a t-vertex clique or a t-

vertex independent set, but the best construction to date | due to Frankl

and Wilson [3] | gives a graph with
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vertices. We proved matching bounds in [5], with a method generalizable to

explicit Ramsey-colorings with more than two colors.

In the paper [4] we have found a relation between low-rank co-diagonal

matrices and Ramsey-graphs.

De�nition 1 ([4]) Let R be a ring and let n be a positive integer. We

say, that the n � n matrix A = faijg is a co-diagonal matrix over R, if

aij 2 R; i; j = 1; 2; : : : ; n and aii = 0; aij 6= 0, for all i; j = 1; 2; : : : ; n, i 6= j.

We say, that A is an upper co-triangle matrix over R, if aij 2 R; i; j =

1; 2; : : : ; n and aii = 0; aij 6= 0, for all 1 � i < j � n. A is a lower co-

triangle matrix over R, if aij 2 R; i; j = 1; 2; : : : ; n and aii = 0; aij 6= 0, for

all 1 � j < i � n. A matrix is co-triangle, if it is either lower- or upper

co-triangle.

To formalize the connection between Ramsey-graphs and matrices, we

also need the de�nition of the rank of a matrix over a ring; (see e.g., [6]).

De�nition 2 Let R be a ring and let n be a positive integer. We say, that

the n � n matrix A over R has rank 0, if all of the elements of A are 0.

Otherwise, the rank over the ring R of matrix A is the smallest r, such that

A can be written as

A = BC

over R, where B is an n� r and C is an r � n matrix. The rank of A over

R is denoted by rankR(A).

The following theorem establishes the connection between the low-rank

co-triangle (or co-diagonal) matrices and Ramsey-graphs; the proof of that

theorem is constructive: that means, that if a matrix is given constructively,

then the Ramsey-graph is also given constructively.

Theorem 3 ([4]) Let A = faijg be an n�n co-triangle matrix over R = Z6,

with r = rankZ6
(A). Then there exists an n-vertex graph G, containing

neither a clique of size r + 2 nor an anti-clique of size
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2

!
+ 2:



3

2

In [4] we have given an explicit construction for a rankZ6
(A) �

2c
p

logn(log logn)-matrix of size n � n, using the BBR-polynomial of Barring-

ton, Beigel and Rudich [1]. An easy computation shows that this matrix-

construction together with Theorem 3 imply an explicit Ramsey-graph with

homogeneous sets of the same logarithmic order of magnitude as the result

of Frankl and Wilson [3]. Now we give another construction for low mod

6 rank co-diagonal matrices using modular sieves. This construction is our

main result here.

2 Our Construction

2.1 A logarithmic-rank co-diagonal matrix

The �rst step in the construction is a co-diagonal matrix suitable for large

moduli. The next step is the modi�cation of that construction for small

composite moduli, say 6. The basic idea is to construct an n�n co-diagonal

matrix A by a sum of a small number of rank-1 0-1 matrices.

Then A will have a small rank, because of the following easy lemma from

[4]:

Lemma 4 ([4]) Let R be a ring and let A and A0 be two n � n matrices.

Then rankR(A+A0) � rankR(A) + rankR(A
0).

2

Consequently, if we get a co-diagonal matrix as a sum of { say { z rank-1

matrices, then its rank is at most z.

For simplicity, we identify these rank-1 0-1 matrices by the positions of

the entries, containing 1. For example,W = f(i:j) : i 2 I; j 2 Jg denotes an
n� n 0-1 matrix fwijg, where wij = 1 () i 2 I; j 2 J:

First, let us see a construction for a 2dlog(n+1)e-rank co-diagonal matrix.

Let us consider the following n� n rank-1 matrices:

Ut = f(i; j) : it = 0; jt = 1g; Vt = f(i; j) : it = 1; jt = 0g

where it and jt denotes the tth bit in the binary form of 1 � i � n and

1 � j � n, respectively, and let

A =

dlog(n+1)eX
t=1

(Ut + Vt) :
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Clearly, both Ut and Vt are rank-1 0-1 matrices, their combined number

is 2dlog(n+1)e, and the 1's in them cover all the o�-diagonal elements of A.

Consequently, the rank of A is at most 2dlog(n + 1)e. It is also obvious,

that entry aij of matrix A is covered H2(i; j)-times, where H2(i; j) stands

for the Hamming-distance of the binary forms of i and j. Consequently, the

entries of A are less than or equal to dlog(n + 1)e.
For our results, we need a somewhat di�erent initial cover. For the de�-

nition of this cover, let us represent the indices not in binary, but rather in

N -ary form, for N = dlog ne. That is, for 1 � i; j � n, let it; jt be the N -ary

digits of i and j, respectively. Let g = dlogN (n+ 1)e. Then let us de�ne for

t = 1; 2; : : : ; g; and ` = 0; 1; : : : ; N � 1:

U `
t = f(i; j) : it = `; jt 6= `g;

and let

Â =
X

t2f1;2;::: ;gg

`2N

U `
t ;

where N denotes the set f0; 1; : : : ; N � 1g. Then any non-diagonal element

will be covered by HN (i; j)-times, where HN (i; j) stands for the Hamming-

distance of the N-ary forms of i and j, that is, at most g-times.

Clearly, for large enough n, g � 6, so the cover by the sets U `
t will

not de�ne a co-diagonal matrix modulo 6; the entries, where the Hamming-

distance is a multiple of 6, will be covered only 0 times mod 6.

One possible remedy to this problem is getting rid of the multiple covers,

using a sieve-formula.

Let us recall, that we identify the rank-1 0-1 matrices by the positions

of the entries, containing 1. Consequently, for any I � f1; 2; : : : ; gg, and
for any (`1; `2; : : : ; `jIj) 2 N jI j, matrix

T
t2I U

`t
t denotes the rank-1 0-1 matrix

with 1's exactly in the positions (i; j), where for all t 2 I: it = `t 6= jt are

satis�ed. Now let us consider the following sieve:

B =
X

I�f1;2;:::;gg

(�1)jIj+1

0
B@ X

(`1;`2;:::;`jIj)2N
jIj

\
t2I

U `t
t

1
CA : (1)

Note, that B = fbijg is an n� n matrix.

If the entries of Â are denoted by âij, then for any i 6= j if âij = s, that
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is, the position (i; j) is covered s-times, then

bij =

 
s

1
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�
 
s

2
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s

s

!
= 1; (2)

and bii = 0, for all i's. So, clearly, B is a special co-diagonal matrix of the

form

J � I;

where J is the all-1, and I is the identity-matrix of size n� n. However, the

rank of B is too high for any use in Theorem 3.

2.2 The Modular Sieve

Now we will cut the tail of the sieve of (1), getting a sum-matrix of low rank

modulo 6. The method is similar to the construction of the BBR polynomial

[1].

Let � be the smallest integer that 2� >
p
g, and let � be the smallest

integer that 3� >
p
g.

Let us consider now the following two n�n matrices, de�ned with sieves:

C =
X

I�f1;2;:::;gg

jIj<2�

(�1)jIj+1

0
B@ X

(`1;`2;:::;`jIj)2N
jIj

\
t2I

U `t
t

1
CA ; (3)

and

D =
X

I�f1;2;::: ;gg

jIj<3�

(�1)jIj+1

0
B@ X

(`1;`2;:::;`jIj)2N
jIj

\
t2I

U `t
t

1
CA : (4)

Now we can state our main Lemma:

Lemma 5 The matrix 3C + 4D is co-diagonal modulo 6, and its rank over

Z6 is exp (O(
p
log n log log n)).

Proof.

For the entries cij of the matrix C we can give a similar formula that was

given in (2). Again, let i and j be chosen so that âij = s, then there are two

cases.
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Case 1: s < 2�.

cij =

 
s

1

!
�
 
s

2

!
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s

s

!
= 1: (5)

In Case 1 there are no problems, for an arbitrary modulus, cij is non-0.

Case 2: s � 2�.

cij =

 
s

1

!
�
 
s

2

!
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s

2� � 1

!
: (6)

At this point we need a simple Lemma, its proof can be found e.g. in [5].

Lemma 6 Let p be a prime, k, j, e non-negative integers, e � 1. For any

k < pe,  
j + pe

k

!
�
 
j

k

!
(mod p):

2

Now we deal with Case 2. Let s0 = s mod 2�, that is, 0 � s0 < 2�, s0 � s

(mod 2�). From (6):

cij �
 
s0

1

!
�
 
s0

2

!
+ � � �+

 
s0

s0

!
(mod 2); (7)

That means that cij � 0 (mod 2) if s = HN (i; j) is a multiple of 2� and

it is 1 modulo 2 otherwise.

An analogous proof shows for D = fdijg of (4) that dij � 0 (mod 3) if

s = HN (i; j) is a multiple of 3� and it is 1 modulo 3 otherwise.

Note, that 2�3� > g = dlogN (n+ 1)e, that is, it is larger than the maxi-

mum Hamming-distance between any i and j, for any �xed i 6= j. So cij � 0

(mod 2) and dij � 0 (mod 3) cannot hold simultaneously. Consequently,

the matrix 3C + 4D will be co-diagonal modulo 6, and its rank is at most

the combined number of the rank-1 matrices in equations (3) and (4), that

is exp (
p
log n log log n).2
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