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ABSTRACT

The main problem of coding theory is to construct codes with large Hamming-distances
between the code-words. In this work we describe a fast algorithm for generating pairs
of g-ary codes with prescribed pairwise Hamming-distances and coincidences (for a
letter s € {0,1,...,¢— 1}, the number of s-coincidences between codewords a and b is
the number of letters s in the same positions both in @ and b). The method is a gen-
eralization of a method for constructing set-systems with prescribed intersection sizes
(V. Grolmusz: Constructing Set-Systems with Prescribed Intersection Sizes, DIMACS
Technical Report No. 2001-03), where only the case ¢ = 2 and s = 1 was examined.
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1 Introduction

In the theory of codes one of the main questions is to find dense codes with large
minimum Hamming-distance. Here we address the problem of generating codes with
prescibed pairwise and k-wise Hamming-distances.

First we consider a generalization of the set-intersection for ¢-ary codes: coinci-
dences. Let s € {0,1,2,...,¢—1}, then the number of s-coincidences of two code-words
aand b € {0,1,2,...,qg — 1}" are the number of coordinates i such that a; = b; = s,
that is, the number of letters s in the same positions in a and b.

We describe a construction in which we apply multi-variate polynomials to codes.
Choosing a polynomial f and initial codes A and B we apply f to the codes, getting
f(A) and f(B). The most remarkable property of the A — f(A) mapping is that the
s-coincidence of words f(A) and f(B) essentially can be got with applying f to the
s-coincidences of the original codes A and B (see Theorems 10 and 13 for the exact
statements). This fact yields a tool for manipulating codes in order to get prescribed
coincidences. Note, that we can even allow different polynomials for different letters
s €{0,1,...,¢— 1} in this construction(see Theorem 15).

The construction, presented in this paper is a generalization of a similar construction
for set systems appeared in [Gro0Ol1].

We also prove that the Hamming-distances between the new code-words are a simple
function of the Hamming-distances between the old code-words and f (see Corollaries
22 and 23.) This fact can be used for generating codes with prescribed Hamming
distances, if we have a proper polynomial f. Over the integers, our method works
only for polynomials with non-negative integer coefficients, which fact forbids most of
the interpolating polynomials, containing negative coefficients, but if we aim to set
the Hamming-distances only modulo a positive integer, the problem, caused by the
negative coefficients, disappears.

In paper [GSO1] we proved the k-wise analogue of the classic Delsarte-theorem for
codes. Here we define the k-wise coincidences between k code-words (Definition 16),
and prove that the k-wise coincidences of codes f(A;) ¢ = 1,2,...,k are the f-function
of the k-wise coincidences of the codes A;, 1 =1,2,... k (Theorem 18). As a corollary
of this result, we got a construction for codes with their k-wise Hamming-distances
being a simple function of the k-wise coincidences of the original ones (Theorem 25).
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2 Preliminaries

2.1 Codes, Hamming-distances and Coincidences
Definition 1 Set C' is a g-ary code of length n if
Cc{0,1,....,q—1}",

i.e., it is a set of length-n words formed from symbols {0,1,...,¢— 1}. For any code
C, we fix arbitrarily an order of its elements (called code-words), so we can write

C={c,c?....c} fort =|C|.

Definition 2 Let A = {a',a?, ... ,a*} be a code. Then the matriz of A, denoted by
M(A), is an n x { matriz, with column j equal to the code-word a’, for j = 1,2 ... (.

*)

Let us remark that code A determines M(A) since we have fixed an order of the
elements of A in Definition 1.

Definition 3 Let A = {a',d?, ...,a*} and B = {b',b?,...,b"} be two g-ary codes.
Then the Hamming-distance-matriz of codes A and B, denoted by

H(A, B) = {hi;},
is a k x { integer matriz, where h;; is the Hamming-distance of words a* and b .

Example 4 Let

3 1 0 31 1 4
MA)=|[5 1 2|, MB)=|5 0 2 5
2 1 3 2 1 3 6
Then
0 3 3 2
HAB)=(3 1 2 3
3 3 1 3

We also need to define a sort of complement of Hamming distance of code-words,
or sequences: the number of the same letters in the same positions.

Definition 5 Let A = {a,d?,...,a"} and B = {b*,b?,...,b"} be two q-ary codes, and
let s €40,1,2,...,q—1}. Then the s-coincidence-matriz of codes A and B is a

Cs(A, B) = {cij}
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k x { integer matriz, where ¢;; = c,(a’,¥) is the number of coordinates in code-words
a' and ¥, which are both equal to s:

cs(a', V)= |{k:1<k<n,d, =b, =s}

Similarly, the s-coincidence-position matriz C Ps(A, B) = {w;;} is a k X { matriz with
length-n vector-elements, where w;; is a 0-1-vector of length n, defined as:

wij = (u1,ug,...,u,), where uy =1 iff a; = b = s.

Example 6 With the codes A and B of Example 4,

0
Ci(A,B)= |0
0

[enll (RN en]

0 0
10
0 0

The following lemma describes an easy relation between the Hamming-distance-
and the coincidence-matrices.

Lemma 7 Let J denote the all-1 matriz, and let A and B be two length-n g-ary codes.
Then

H(A,B) = nJ — qz_f Ci(A, B).

1=0

d

Definition 8 Let R and S be two rings, and let X € R**V be a matriz, with elements
{;;}, and let f be an f: R — S function. Then we define matriz f[X] € S**V to be

a matriz with entries {f(xi;)}.

Definition 9 Let f(x1,22,...,%0) = Yicqi2,..ny @121 be a multi-linear polynomial
over integers. where x; = [[;c; ;. Let us define its weight as w(f) = [{as : ar # 0}|,
and its Ly norm as Li(f) = > rc{1,2,.m} lag|.

3 Generating code-pairs

Our main contribution is a method for generating codes with a prescribed coincidence-
matrix with a possibly small code-length. For ¢ > 3, it is not difficult to give a pair of
g-ary codes A and B of length Q(|A||B|) with prescribed coincidence-matrices.
Indeed, let us divide each code-word a € A into |B| segments, and each segments
into ¢ sub-segments. The |B| segments in each a will correspond to the elements of B,
and the segment, corresponding to b € B will provide the coincidences with b, and the
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sub-segment s will provide the prescribed number of s-coincidences between a and b,
for any s € {0,1,...,¢ — 1}. If we need r s-coincidences, then the subsegment in

. . /_/_ .
a 1s given: s,8,5,8,...,58, 10
T
. . /_/% .
bis given: s,s,5,S,...,s, in
T

——l
a' # ais given: 6,6,6,6,...,0,in

b' # bis given: 0,0,0,0,...,0,
for some pairwise different s,0,6 € {0,1,...,q—1}.

Clearly, this sub-segment will not give rise to any other coincidences just to the
s-coincidences and only between a and b.

However, our method yields codes with length not depending on |A|, but only on
the Li-norm of a polynomial, which describes the elements of the coincidence-matrix.
That means, that if we have a polynomial with small L; norm, then our codewords will
be short. More exactly, we prove:

Theorem 10 Let ¢ > 2, and let A and B length-n g-ary codes, and let f be an n-
variable multi-linear polynomial with non-negative integer coefficients. Then there exist
g-ary codes A" and B', such that

Ci(A', B') = [ICP(A, B)],
a, for s =0,...,q—1, and for ¢ > 4, the length of codes A" and B is 2L1(f);
b, fors=0,...,q—1, and for ¢ = 3, where the length of codes A" and B’ is 3L1(f);
¢, fors=1,2,...,q—1 and for ¢ > 2, where the length of codes A" and B is L1(f).

Moreover, codes A" and B' can be computed from codes A, B, and polynomial f in time

O(L1(f) deg(f)(|A] + [BI)).

For the proof we need to develop some machinery.

3.1 The main lemma

Our main contribution in this work is a method for constructing new codes from given
ones, with the values of the coincidence-matrices of the new codes are equal to the
function f of the entries of the old coincidence-matrices. Our construction works over
the positive integers with f’s with non-negative integer coefficients, or over the ring of
mod m integers, where the non-negativity assumption is not needed.
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Let f be a multi-linear polynomial with n variables and either with non-negative

integer coefficients or with coefficients from a ring of mod m integers:

flar,ae,.. . x,) = Z arry

I1c{1,2,...,n}

and let A be a g-ary code of length n. Let o € {0,1,...,¢ —1}.

Code-generation algorithm Let o € {0,1,...,g—1},and T C {0,1,...,9—1},0 &
I'. Here we describe an algorithm for constructing code-matrix M(fL(A)) with o-
filling and I'-prohibition:

Consider the matrix M(A) = {b;;}, and let us correspond its row i to symbol z;, for
i =1,2,...,n. We will construct a matrix M(fL(A)) with L,(f) rows and k = |A|
columns as follows. The rows of M(fI(A)) will correspond to the monomials x;
of f for I C {1,2,...,n}, with a;j # 0; we will take every monomial x; a; times,
that is, term ajx; will be corresponded to a; identical rows of matrix M(f3(A)).
Consequently, matrix M(fL(A)) has Li(f) rows. Now we specify the entries in the
rows of this matrix. Consider a row, corresponding to a monomial xj. Let 1 < j < m,
and consider the jth entry of this row. Let us define this entry to be y € {0,1,...,¢—
1} =T if and only if all the entries b;;,t € I are equal to y, and let this entry be equal
to o (the filling-element) otherwise.

The code, corresponding to the columns of matrix M(fL(A)) is called fL(A), if

I' =, then we write f,(A)

Note, that code fL(A) does not contain any word with any letter from T

Example 11 Let f(x1, 22, x5, 24) = x1 + 2 + 203204 + 22324, and let

Then

1 /0 1 1

x|l 01

M(A) = 3|2 0 2

4 \2 0 1
T 0 1 1 T 0 2 2
Zy 1 1 1 Zy 2 2 2
M(fy(A) = zszq |2 0 2], M(fAH(A) = zazg |2 0 2
T3y 2 0 2 T3y 2 0 2
Tol3l4 2 0 2 Tol3l4 2 0 2
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Our main lemma describes the most important properties of this code-construction.

Lemma 12 Let A and B length-n q-ary codes, and let f be a multi-linear polynomial
with n variables and either with non-negative integer coefficients or with integer coef-
ficients from the modulo m ring of integers, and let s,o be different elements of set
{0,1,...,¢—1}, and let I' C {0,1,...,g— 1}, such that neither s nor o is in I' . Then

’ Co(FE(A), FE(B)) = fICP,(A, B));
b, If T = {5},
Co(f8A), f17(B)) = FICP(A, B));

Cs(FI(A), FIN(B)) = C, (£ (A), FI(B)) = 0.

Proof:  Recall, that A = {a',a?,...,a*} and B = {b',b%,...,b"}.

For proving statement (a), we assume that the element in row ¢ and column j of
CP,(A,B)isu = (uy,ug,...,u,) € {0,1}". That means, that a} = b] = s exactly when
u; = 1. Now, f(u) is equal to the number (counting the multiplicities) of monomials
xzyin f, such that for all ¢ € I u; = 1. However, this happens exactly when for all t € 1
al = bl = s, that is, the coordinates, corresponding to the monomial z; of the word ¢
of f(A) and word j of f(B) are both s; that means that for this monomial value 1 is
contributed to the element in row 7 and column j of matrix C,(fL(A), fL(B)). Note,
that since the filling element o differs from s, only the aforementioned contributions

will be counted to matrix C,(fL(A), f(B)).

Proofs of parts (b) and (c) are obvious. O
Proof of Theorem 10:

The easiest case is (c), so we prove that first.
Part (c): Let the filling-element 0 = 0. Then, by Lemma 12 (a), for any s # 0:

CS(fO(A)va((B)) = f[CPs(A7B)]a

so A" = fo(A), B' = fo(B) suffice.
Parts (a) & (b): We prove that the length of the codes is

P

q—2
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and this implies both (a) and (b). First, partition set {0,1,...,¢ — 1} into

|

classes of size at most ¢ — 2, let these classes be =; for e =1,...,tt =2 or ¢t = 3. For
some 7, take =;, and o, 3 € {0,1,...,¢— 1} — =, a # (. Let

A = (), BY = f9(B).

Certainly, by part (b) of Lemma 12, for any s € =; the requirements are satisfied. At
the end, we get the final A’ by concatenating the corresponding code-words of codes
A®) for i = 1,...,t and the final B’ by concatenating the corresponding code-words
of codes B® fori=1,...,t.0

M(f5(B))

Figure 1: The proof in g > 4 case.

4 Further results for code-pairs
First we give a variant of the Theorem 10, where A = B and A’ = B":

Theorem 13 Let A be length-n q-ary code, and let f be an n-variable multi-linear poly-
nomial with non-negative integer coefficients. Then there exist explicitly constructible

g-ary code A', such that
Cs(A", A" = fICPs(A, A)],
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s=1,2,...,q—1 and for ¢ > 2, where the length of code A’ is Li(f). Moreover, code
A" can be computed from codes A and polynomial f in time O(L1(f)deg(f)|A]).

Proof of Theorem 13: Let A’ = f(A), and choose the filling-element o = 0, and
apply Lemma 12 (a) with no prohibition (i.e., no §). We get that for all s # 0
Cs(A',A") = fICP(A, A)], and we are done.O

If fis a symmetric polynomial over a prime-element field, then it can be written
as a single-variable polynomial, and we have the following Corollary:

Corollary 14 Let A and B be length-n q-ary codes, let ¢ > 4, and for a prime r,
let F, denote the r-element field, and let f : F, — F,. be a polynomial. Then we can
construct codes A', A" and B" with a fast polynomial-time algorithm, such that

Ci(A",B") = fI[C;(A,B)], i=0,1,...,q—1,

and

Ci(A", A") = fICi(AA)], i=1,...,q—1,
and where the length of codes A" and B' is at most 2r Eg;é (?), and the length of A"

is at most r Z?;é (?)

In other words, we can prescribe the values of the coincidency-matrices modulo r.

Proof of Corollary 14: The statement follows from Theorem 10 part (a), using that
single-variable functions f over F, can be interpreted as a symmetric n-variable function
g(z1,22,. ..y 2n) = f(z1 4+ 224+ -+ -+ z,). Since f has degree at most r — 1, g may have
at most E;;é (7;) monomials, consenquently, its Li-norm is at most (r — 1) E;;é (7;),
if the coeflicients are represented by the elements of set {0,1,...,r —1}.0

We can allow different polynomials for different coincidence-matrices, or even dif-

ferent moduli for different polynomials in the following Theorem:

Theorem 15 Let A and B length-n q-ary codes, let ¢ > 3, and let foy, f1), -5 fig-1)
be n-variable multi-linear polynomials with non-negative integer coefficients, and let
Mg, M1, ..., Me_1 be positive integers, all greater than 1. Then there exist explicitly
constructible g-ary codes A" and B’ of length

Z: L1 (f(i)),

such that

a, Cs(A',B') = f(s[CPi(A,B)], fors=0,1,...,¢—1;

?
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b, Cs(A',B') = f[CPi(A,B)] (mod my) fors=0,1,...,q— L

Proof of Theorem 15: We use a similar procedure as in the proof of Part (b) of
Theorem 10.

The code-words of A" and B’ will be divided to segments, one segment for each
s €{0,1,...,¢ — 1}. The length of segment s is at most Li(f(s)). The segment s of
the codes is defined as gf(A) in A’ and ¢5(B), where g = f(5), and § # o are elements
of {0,1,...,¢ — 1}, distinct from s. By Lemma 12 both (a) and (b) are satisfied for
this s, and by concatenating the segments for each s we get codes A" and B’ of length
at most

i:Ll(f( ))

satisfying (a) and (b) for all s € {0,1,...,¢—1}. O

5 Generalizations for k-wise coincidences
Our results can be generalized to k-wise coincidence-matrices as well:

Definition 16 Let Ay, Ay, ..., Ay be length-n q-ary codes. Let s € {0,1,2,...,¢—1}.
Then the k-wise s-coincidence (k-dimensional) matriz of codes Ay (€ = 1,2,...,k) is
a

CS(A1, A27 s 7Ak) = {Ci17i27~~~7ik}

k-dimensional integer matriz, where entry c;, i, 15 defined to be the number of co-
ordinates in the 115t code word of Ay, in the tynd code-word of As, ..., in the ixth
code-word of Ay which are all equal to s. Similarly, the k-wise s-coincidence-position

matriz CPs(Aq, As, ..., Ax) = {Wiy4y,..ir } i a k-dimensional matriz, where w;, ;,  ;, is

i

a length-n 0-1-vector, defined to be 1 zf at that position all the corresponding code-words
contain s.

Let us remark that the k-wise coincidence-matrices contain all the k’-wise coinci-
dences for 1 < k' < k. Indeed, ¢, 4, gives a k' < k-wise coincidence, when the
number of different indeces in set {u1,13,...,2;} is exactly k’. We also need a k-wise
version of one of our definitions:

Definition 17 Let R and S be two rings, and let X € R“*"2X"% pe q k-dimensional
matriz, with elements {x;, i, }, and let f be an f: R — S function. Then we define
k-dimensional matriz f[X] € S“X“2X% to be a matriz with entries {f(zi, iy....ix)}-

Consequently, the following theorem states that choosing a polynomial f will ensure
that all the k’-wise coincidences (for 1 < k' < k) are set according to f.
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Theorem 18 Let g > k, and let Ay, As, ..., Ag be length-n q-ary codes, and let f be
an n-variable multi-linear polynomial with non-negative integer coefficients. Then there
exist explicitly constructible q-ary codes A}, A}, ..., Al such that

Cy(AL, AL, .. AL) = FICP,(Ay As, ..., Ay,

a, for s =0,...,q— 1, where the length of codes A}, A}, ... A} is L_L]J Li(f);

b, fors=1,2,...,q— 1 and for ¢ > 2, where the length of codes A}, A}, ... A} is
Li(f).

Moreover, codes Ay, AL, ... A} can be computed from codes Ay, Ag, ..., A, and poly-
nomial f in time O(L1(f)deg(f)(|A1| + |Az] + ... + |Ax])).

Proof:

We need a k-wise generalization of Lemma 12:

Lemma 19 Let Ay, Ay, ..., Ag length-n g-ary codes, and let f be a multi-linear poly-
nomial with n variables and either with non-negative integer coefficients or with integer

coefficients from the modulo m ring of integers, and let s, o be different elements of set
{0,1,...,¢—1}, and let I' C {0,1,...,g— 1}, such that neither s nor o is in I' . Then

Co(f7 (A1), £ (A2) oo 5 (AR)) = FICP(Ar, Ag, o AR,

Proof:

Let a(j)*, a(y)?, ... denote the words of code A; for j = 1,2,..., k. We assume that
the vector with coordinates (71?2, ..., 1) of the k-dimensional C' Ps( A1, Az, ..., Ax) ma-
trix is u = (ug, ug, ..., u,) € {0,1}". That means, that a(l)il = CL(Z)? == a(k)ik =
s exactly when u; = 1, for t = 1,2,...,n. Now, f(u) is equal to the number (counting
the multiplicities) of monomials z; in f, such that for all ¢ € I u; = 1. However, this
happens exactly when for all ¢ € I the coordinates, corresponding to the monomial z;
in the word #; of fI(A;) and in the word iy of ff(A,), ...,and in the word i), of fL(Ay)
are all s; that means that the coordinate, corresponding to monomial z;, contributes
value 1 to element (i1, iy, ...,4%) of matrix Cs(fL (A1), fL(As),..., fL(Ar)). Note, that
since the filling element o differs from s, only the aforementioned contributions will be
counted to this matrix.

O

Now we prove Theorem 18. First we prove statement (b). Here s # 0, so we can
use 0 = 0 for the filling element, and ' = (). Consequently, let A} = fy(A;), for
i =1,2,...,k, and the length of code A! is L;(f).
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Now we prove part (a). First, partition the set {0,1,...,¢ — 1} into

-l

classes =1, =5, . .., 2, each of size at most ¢ — k. Codewords of the codes A}, A}, ..., A}
will consist of h segments. Segment ¢ (¢ = 1,2,..., k) is constructed as follows: Suppose
that {ay,ag,...,ar} ={0,1,...,¢ — 1} — =;. Then let

A’l(i) — filozz,azwi ----- ak}(A1)7

A’z(l) — i204170437044 ----- ak}(A2)7
Ag(l) — i?17a27a4---7ak}(143)’ (1)
A;C(Z) — i?haQ ..... ak_l}(Ak).

Certainly, in segment 2, all the s € =; will be set according to the requirements of
the Theorem, as follows from Lemma 19. So, concatenating the corresponding words
from the segments i = 1,2,...,h we will get codes A}, A}, AL, ..., A}, each consist of
words of length AL;(f).

O

Theorem 20 Let A be length-n q-ary code, and let f be an n-variable multi-linear poly-
nomial with non-negative integer coefficients. Then there exist explicitly constructible
g-ary code A', such that for any k > 2:

k k

—T—
Cy(A, A, A) = fl[CP,(A, 4,..., A,

fors=1,2,...,q—1 and for ¢ > 2, where the length of code A" is Li(f). Moreover,
code A" can be computed from codes A and polynomial f in time O(L.(f)deg(f)|A]).

Proof:  The proof is immediate from the proof of part (a) of Theorem 18, one should
choose 0 as the filling element. O

When f is a one-variable function, then it can be applied directly to the coincidence-
matrix Cj:

Corollary 21 Let A be a length-n q-ary code, let ¢ > 2, and let F,. denote the r-
element field, and let f : F. — F, be a polynomial. Then there exist an explicitly
constructible g-ary code A, such that

k k
Oy (AL AL AN = FlC(A, A, .., A)

Jors=1,2,....q— 1. The length of A" is at most r 2125 (7).
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6 Applications for Hamming-Distances

Using Lemma 7 the following Corollary of Theorem 10 is immediate:

Corollary 22 Let A and B be length-n q-ary codes, where ¢ > 4, and let f be a multi-
linear polynomial with non-negative integer coefficients. Then we can construct codes

A" and B" with a O(L1(f) deg(f)(|A| + |B]))-time algorithm, such that

g—1

H(A,,B,) = ZLl(f)‘] - Zf[CPS(A7B)]7

s=0

and where the length of codes A" and B' is at most 2L1(f), and J denotes the all-1

matriz.

In the case when A = B, and we need A’ = B’, the situation is somewhat harder:
By Theorem 13 we cannot prescribe the coincidency-matrix for the filling-element, say
for 0. So, we can state:

Corollary 23 Let A be a length-n g-ary code, where ¢ > 2, and let f be a multi-linear
polynomial with n variables and with non-negative integer coefficients. Then we can

construct code A" a O(L1(f) deg(f)(|A]))-time algorithm, such that

H(A, A" = 2Ly (f)J — qz_if[CPs(A,B)] — Cy(A', A",

s=1

and where the length of code A" is at most Li(f).

In [GSO01] we defined the k-wise Hamming-distance of codes; here we also need
k-wise Hamming-distance matrices:

Definition 24 Let o' € A;, fori=1,2,...,k. Their k-wise Hamming distance,
dp(at,d?, ..., a")

is U, if there exist exactly { coordinates, in which they are not all equal. (Equivalently,
their coordinates are all equal on n—{ positions). The k-wise Hamming-distance matriz

H(A1, A, ..., Ar) = {diy iy} s @ k-dimensional integer matriz, where

diy g, = di(a™,a", ... a'),

where a'i € A;, j=1,2,... k.

?
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As a corollary of Theorem 18 and the k-wise version of Lemma 7, we prove for the
k-wise Hamming-distances of the new codes:

Corollary 25 Let A; (1 =1,2,...,k) be length-n g-ary codes, where ¢ > 3, and let f
be a multi-linear polynomial with n variables and with non-negative integer coefficients.
Then we can construct codes Ay, Al ..., A} with a O(L1(f) deg(f)(|A1| + |Az] +--- +
|Ak|))-time algorithm, such that

H(AL AL, AL = {L]J Li(f)J — qz_: FICP(AL, Ay, .. A,

q— s=0
and where the length of codes A’ is at most [q_ﬁ} Li(f), and J denotes the all-1 matriz.
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