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ABSTRACT

We prove a version of the Ray-Chaudhuri-Wilson and Frankl-Wilson theorems for k-
wise intersections and also generalize a classical code-theoretic result of Delsarte for
k-wise Hamming distances. A set of code-words a',a?,...,a" of length n have k-wise
Hamming-distance ¢, if there are exactly ¢ such coordinates, where not all of their
coordinates coincide (alternatively, exactly n — £ of their coordinates are the same).

We show a Delsarte-like upper bound: codes with few k-wise Hamming-distances must
contain few code-words.



1 Introduction

In this paper we give bounds on the size of set-systems and codes, satisfying some k-
wise intersection-size or Hamming-distance properties. For k = 2, these theorems were
proven by Ray-Chaudhuri and Wilson [12], Frankl and Wilson [9], and Delsarte [6], [5].
The k > 2 case was asked (partially) by T. Sés [13], and Fiiredi [10] proved, that for
uniform set-systems with small sets, the order of magnitude of the largest set-system
satisfying k-wise or just pair-wise intersection constraints are the same (his constant
was huge). Grolmusz [11] proved a k-wise intersection analog of the Deza-Frankl-Singhi
theorem [7], and gave direct applications for explicit coloring of k-uniform hypergraphs
without large monochromatic sets.

Here we first strengthen the result of [11], giving at the same time a much shorter
proof, and then prove a k-wise version of the Delsarte-bounds [6], [5] for codes. In
the last section we present a construction which shows that some of our bounds are
asymptotically tight.

2 Set systems

In this section we present results on set-systems with restricted k-wise intersections.
We begin with the following extension of results from [12].

Theorem 1 Let L be a subset of non-negative integers of size s. Let k > 2 be an
integer and let H be a family of subset of n-element set such that |Hy N ...N Hy| € L
for any collection of k distinct sets from H. Then

<t-0y (7).

1=0

If in addition the size of every member of H belongs to the set {ky,... k} and k; > s—t
for every 1, then

HI<(k—1) 3 ()

i=s—t+1 \?

This theorem has the following modular version, which generalize the theorem of
Frankl and Wilson [9] and strengthen the result from [11].

Theorem 2 Let p be a prime and L be a subset of {0,1,...,p—1} of size s. Let k > 2
be an integer and let H be a family of subsets of n-element set such that |H| (mod p) & L
for every H € H but |Hy N ...N Hy| (mod p) € L for any collection of k distinct sets
from H. Then

<=0y (7).

1=0
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If in addition there exist t < s integers ky,... .k, € {0,1,....,p— 1} so that k; > s —t
for each i and |H| (mod p) € {ki,...,ki} for every H € H, then

m=i-n 3y (1)

i=s—t4+1 \?

We start with the proof of Theorem 2 and then we show how to modity it to get
Theorem 1. Our proof combines an approach introduced in [1] with some additional
ideas.

Proof: Let L = {l;,...,l;} and let H be a set system satisfying assertion of the
theorem. We repeat the following procedure until H is empty. At round i if H # ) we
choose a maximal collection Hy, ..., Hy from H such that | ﬂ;lzl H;| (mod p) ¢ L but
for any additional set H' € H we have that | ﬂ;l:l H;n H'| (mod p) € L. Clearly by
definition such family always exists and 1 < d < k — 1. Denote A; = H,, B; = ﬂ‘j:lHj
and remove all sets Hy, ..., Hy from H. Note that as the result of this process we obtain
at least m > |H|/(k—1) pairs of sets A;, B;. By definition, |A;NB;| = |B;| (mod p) & L
but |A, N B;| (mod p) € L for any r > i. With each of the sets A;, B; we associate its
characteristic vector which we denote «a;, b; respectively.

Let Q denote the set of rational numbers. For z,y € Q", let x - y denote their
standard scalar product. Clearly a, - b; = |A, N B;|. For ¢« = 1,...,m let us define the
multilinear polynomial f; in n variables as

S

file) = TI(x - b = 1),

i=1

where for each monomial, we reduce the exponent of each occurring variable to 1.
Clearly

fila) =TI (140 Bl = ;) = T] (1Bl = ;) # 0 (mod p) for all 1 < i < m,
i=1 i=1

but
fila,) = H (|AT N B;| — Zj) =0 (mod p) for 1 <i<r < m.
i=1
We claim that the polynomials fi,..., f,, are linearly independent as a functions

over F,, the finite field of order p . Indeed, assume that Y «; fi(z) = 0 is a nontrivial
linear relation, where «; € F,,. Let 2o be the largest index such that «;, # 0. Substitute
a;, for z in this relation. Clearly all terms but the one with index ¢y vanish, with the
consequence «;, = 0, contradiction. On the other hand, each f; belongs to the space of

multilinear polynomials of degree at most s. The dimension of this space is 32%_, (?),

implying the desired bound on m and thus on |H|.
We now extend the idea above to prove the second part of the theorem. This
extension uses a technique employed by Blokhuis [4] (see also [1]). For a subset I C
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{L,...,n} = [n] denote by vy its characteristic vector and by x; = [[;c; ;. In particular
zg = 1 and it is easy to see that for any J C [n], z;(vy) = 1 if and only if I C J and
zero otherwise. In what follows we use the notation introduced in the first part of the
proof.

In addition to polynomials f; we define a new set of multilinear polynomials

n

gr(x) =y - H (Erz — kj) for I C [n].

Here again we reduce the exponent of each occurring variable to 1 to make g; multi-
linear. We claim that the functions g; are linearly independent over F, for |I| < s —t.
Denote by h(x) = [T'—y(Xi2, @i — k;j). Since k; > s — ¢ for all 7, note that h(v;) # 0
for all |[/| < s —t. Let us arrange all the subsets of {1,2,...,n} in a linear order,
denoted by <, such that J < [ implies that |J| < |I]. Clearly if |I],|J] < s —t by
definition, g;(vy) = x1(vy)h(vy) is equal to h(vy) # 0 if [ = J and zero if J < [I.
Now the linear independence of g;(x) follows easily. Indeed, if 3= ;<,_; Brg1(x) = 0 is a
nontrivial relation, let [y to be a minimal index (with respect to <), such that 35, # 0.
By substituting = v, we immediately obtain a contradiction.

To complete the argument we show that the functions f; remain linear independent

even together with all the functions g; for [I| < s —t. For a proof of this claim assume

that
Zaifi(J?) + > Bigi(z) =0,

I|<s—t

for some oy, Br € F,. Substitute x = a;. All terms in the second sum vanish since
|A;| (mod p) € {ki,...,k:} and hence h(a;) = 0. In this case we can deduce that all
a; = 0 as previously. But then we get a relation only among the polynomials ¢g; and it
was already proved that such relation should be trivial.

Therefore we found m +352¢ (?) linearly independent functions, all of which belong
to space of multilinear polynomials of degree at most s. As we already mentioned, the
dimension of this space is 327_, (?) This implies the desired bound on m and thus on

|H|. O
An easy modification of above proof establishes Theorem 1.

Sketch of proof of Theorem 1. We repeat the following procedure. At step ¢, if
|HN H'| € L for any two distinct sets in H, then let Hy be the largest set remaining in
‘H. Denote A; = B; = H; and remove H; from H. Otherwise there exist a collection
Hy,..., H; from H such that | ﬁ;-l:l H;| € L but for any additional set H € H we have
that |ﬂ?:1 H;NH'| € Land2<d<k—1. Denote A, = Hy, B, = H?ZIH]- and remove
all sets Hy,..., H; from H. By definition, |A; N B;| = |B;| but |A, N B;| € L and has
size strictly smaller than |B;| for all » > i. With each of the sets A;, B; we associate
its characteristic vector which we denote a;, b; respectively.
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We will also need a slightly different definition of polynomials f;. For:=1,...,m
let us define the multilinear polynomial f; in n variables as

file) =TI (z-b:i=1)).

1;<|Bil

By our construction f;(a;) # 0 but fi(a,) = 0 for all r > . Now the rest of the proof
is identical with that of Theorem 2 and we omit it here. O

3 Codes

Let A={0,1,2,...,¢—1}. The Hamming-distance of two elements of A™ is the number
of coordinates in which they differ. A g-ary code of length n is simply a C' C A™. The
following result is a classical inequality of Delsarte [6], [5]:

Theorem 3 (Delsarte) Let C be a g-ary code of length n. If the set of Hamming
distances which occur between distinct codewords of C has cardinality s, then

1= -1 (7).

Frankl [8] proved the modular generalization of this result, and it was further
strengthened by Babai, Snevily and Wilson [3].

Our goal here is to give generalizations of this theorem for k-wise Hamming dis-
tances.

Definition 4 Let a' € A", fori=1,2,...,k. Their k-wise Hamming distance,
dy, (al, a’, ..., ak)

is U, if there exist exactly { coordinates, in which they are not all equal. (Equivalently,
their coordinates are all equal on n — { positions).

We prove the following theorems. The first one generalizes Delsarte’s original bound
[6], [5] to k-wise Hamming distance:

Theorem 5 Let C be a g-ary code of length n. If the set of k-wise Hamming distances
which occur between k distinct codewords of C' has cardinality s, then

1< -0 Ya- 1 (7). ()

1=0 ¢

The second result is the modular version of Theorem 5, it is a k-wise generalization
of the modular upper bound of Frankl [8] and also a result of Babai, Snevily and Wilson

[3]:
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Theorem 6 Let C be a g-ary code of length n, p be a prime and let L be a subset of
{1,...,p—1} of size s. If the set of k-wise Hamming distances which occur between k
distinct codewords of C lie in L modulo p, then

1< -0 Y-1 (7).

1=0

If in addition, there exist t < s integers wy,...,w; € {0,1,...,p — 1}, so that w; >
s —t for each v and the weight of any member of C is congruent to some element of
{wi,...,w;} modulo p, then

cse-n 3 w-1(])

i=s—t+1 ¢
Two definitions are needed for the proof.

Definition 7 Let a and b be two codewords of length n. Then let a T b denote a
codeword which contains only those coordinates of a and b which are equal. Let |a 10|
denote the length of word aT1b.

For example, if a = 01134230, b = 12134111, then a M b = 134, and |a M b| = 3.

Definition 8 ([3]) For a fized integer a € A, let e(a,x) be the polynomial in one
variable with rational coefficients such that for every b € A

(1, i b=aq,
5(“75)_{0, if b+ a.

Since k-wise Hamming distances which occur between £ distinct codewords are
always nonzero, then the proof of Theorem 5 follows from the statement of Theorem 6
if we choose a prime p > n. Therefore we present only the proof of Theorem 6.

Proof: We start with the proof of the second part of the theorem. Our approach
combines the ideas from [1] and [3].

Let L be the set of k-wise Hamming-distances which occur between the elements
of C and let L' = {l,...,l;} = {(n —1) (mod p) |l € L}. Note that since 0 ¢ L we
have n (mod p) € L'. Now repeat the following procedure until C' is empty.

At round : if set (' is still not empty we choose a maximal subset a', ..., a? from C
such that |a! T a?M...Ma?| (mod p) ¢ L', but for any additional word a’ € C' we have
that |a! Ma®M...Ma?Md'| (mod p) € L'. Clearly, by definition, such codeword-set
always exists and 1 < d < k — 1. Next define ¢ = a*, b' = a' M a?M...Ma? and let
X; C [n] be the set of indices of the coordinates in which a’,1 < j < d are all equal.
Note that |¢' [18¢| = [b'| (mod p) € L' but |¢" M b'| (mod p) € L' for any r > i. Finally

remove a',...,a™ from C and proceed to the next round.
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Let fi(x) be the following polynomial of n variables x1, ..., z,:
file) =TI (3 e(bla)) — L),
u=1 j€eX;

where bé- is the value of the coordinate of & which corresponds to index j € X; and
the summation is restricted only to these indices. Note that by our construction, the
number of such polynomials is at least m = |C|/(k — 1). By definition

S

5ie) = TL (1] = 1) = TT (161 - 1) #0 (mod p),

u=1 u=1

but for all r > ¢

filey =TI (I 1o = L) =0 (meod p).
u=1
Similarly to the proof of Theorem 2, we next define an additional set of polynomials.
Let 6(x) be the polynomial in one variable with rational coefficients such that 6(0) =0
and 6(¢z) = 1 for all ¢ = 1,...,¢g — 1. Note that for any vector & € A", the value of
Sojuq 6(ay) is equal to the weight of x. For all subsets [ C [n],|/| < s —t and for all
vectors v € {1,...,q — 1}!, we define a polynomial

’I’L

gro(z) = (He(;l:i,vi)) ]li[l (> 6(a0) = wy),

el =1

where v; are the entries of the vector v. Clearly, the number of such polynomials is
equal to Y2520 (g—1)! (?), and by definition, the value g7, () is an integer for all z € A™.
In addition for every @ € A™ with weight at most s — ¢, we have g;,(z) # 0 (mod p) if
and only if the vector x, restricted to I, equals to v.

We claim that the polynomials f; and g7, are linearly independent over the ratio-
nals. For a proof of this claim assume that

doaifiz) + Y Brugr.(z) =0,

1|<s—t

is a nontrivial relation. Clearly we can make all a; and fr, to be integers and in
addition, since the above relation is nontrivial we can assume that not all of them
are divisible by p. Let ig be the largest index such that «;, # 0 (mod p). Then,
by substituting = ¢ we obtain a contradiction. Indeed, f;, (c") # 0 (mod p) but
fi(¢) = 0 (mod p) for all i < ig and also g;,(c®) = 0 (mod p), since the weight of ¢® is
equal w; modulo p for some 1 < j <t. Next suppose that all o; = 0 (mod p), and let I,
be the smallest set with the property Bj,., # 0 (mod p) for some vy € {1,...,q— 1}%.
Let g € A™ be a vector which is equal to vy on the coordinates from Iy and is
zero everywhere else. Since all w; are greater than the weight of zg, by substituting
r = xo into relation we obtain gz, ., (20) # 0 (mod p), but as we explain above,
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g1.(x0) = 0 (mod p) for all |I| > |Iy] and v # ve. This contradiction proves the linear
independence of f; and g;,.

Next note that all our computations are over the domain where x;(x; — 1) ... (z; —
g+ 1) = 0 for each variable 1 < i < n. Thus we can assume that in polynomials f;
and gy ,, every variable x; has exponent at most ¢ — 1. If not, we simply reduce these
polynomials modulo z;(x; —1)...(2; — ¢+ 1) for all 7. Also, in addition, every term of
fi and g¢r, 1s the monomial with at most s variables. The space of such polynomials
has dimension Y7 (¢ — 1)2(?) and we have found m + 35} (¢q — 1)2(?) independent
functions in this space. This immediately implies the desired bound on m and hence
on |C|.

Finally we remark that the first part of this theorem follows already from indepen-
dence of the polynomials f;. This completes the proof. O

4 Concluding remarks

e It is natural to ask how tight are the results of Theorems 1, 2, 5 and 6. In
particular do we need to have a multiplicative factor (£ —1) in all upper bounds?
The following construction shows that in Theorem 2 this factor is indeed needed
when p is fixed and n tends to infinity. We do not have analogous constructions
for other theorems.

Let p be a fixed prime, s < p and suppose 27! < k — 1 < 2! for some integer
t = o(n). Note that in this example we do not fix the value of k£ and it can be
as big as 2°"). Let X be an n-element set and let Yi,...,Y; be disjoint subsets
of X, each of size p. Denote by Y = X — U;Y;. By definition |Y| = n’ =
n — [logy(k — 1)]p = (1 + o(1))n. Since the number of subsets of {1,...,t} is
20 >k —1,let I1,...,I;_1 be any k — 1 of these distinct subsets of {1,...,¢}.
Finally, the family H consists of all subsets of X of the form AU (Use,Y:) for all
subsets A of Y of size s and all 1 < j < k — 1. Clearly the number of sets in the
family H equals to

k=) =+ o= (")

and it is easy to see that every set H € H has size equal to s modulo p and every
collections of k distinct sets from H satisfies that |Hy N ... N Hy| = r (mod p)
for some integer 0 < r < s — 1. Note, that the pairwise intersections of the
sets of H do not satisfy the assumptions of the Frankl-Wilson theorem [9], since
their sizes are not separated from the size of the sets itself; however, the k-wise
intersection-sizes are already separated from s modulo p.

e An interesting open question is extension of the results of Theorems 2 and 6 to
composite moduli. In this case the polynomial upper bound is no longer valid
in general. In particular for any £ > 2, ¢ = 6 and L = {1,...,5} there exist
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a family of subset of n-element set of super polynomial size which satisfies the
assertion of Theorem 2, see [11] for details. On the other hand for the special
case of prime power moduli ¢ and s = ¢ — 1 one can still get a polynomial upper
bounds.

It is not difficult to see, that our proofs of Theorems 2 and 6 together with the
tools of Babai, Snevily and Wilson ([3], Theorem 6) and Babai and Frankl ([2],
Theorem 5.30) give the following two results, whose proof will be left to the
reader.

Theorem 9 Let k > 2 and r be integers and p® be a prime power. If H is a
family of subset of n-element set such that |H| = r (mod p*) for every H € H
but |HiN...NHg| # 1 (mod p®) for all collections of k distinct sets from H, then

m<u-n'y (1) s

=0

Theorem 10 Let C be a g-ary code of length n and p® be a prime power. If the
set of k-wise Hamming distances which occur between k distinct codewords of C
are never divisible by p®, then

A<e-nTu-v(t) o

1=0

It is easy to see that when k£ = 2, one can deduce Theorem 2 from the Theorem 6.
But for £ > 3 these two statements do not seem to be related and need different

proofs.
References

[1] N. Alon, L. Babai, and H. Suzuki, Multilinear polynomials and Frankl-Ray-
Chaudhuri-Wilson type intersection theorems, J. Combin. Theory Ser. A,
58(2):165-180, 1991.

[2] L. Babai and P. Frankl, Linear algebra methods in combinatorics, Depart-
ment of Computer Science, University of Chicago, 1992, preliminary version.

[3] L. Babai, H. Snevily, and R.M. Wilson, A new proof for several inequalities on
codes and sets, Journal of Combinatorial Theory, Series A, 71:146-153, 1995.

[4] A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean

space, In Convezity and graph theory (Jerusalem, 1981), pages 65-66. North-
Holland, Amsterdam, 1984.



Grolmusz-Sudakov: k-wise Hamming-Distances 9

[5]

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory,

Philips Res. Rep. Suppl., (10):vi497, 1973.

P. Delsarte, The association schemes of coding theory, In Combinatorics (Proc.
NATO Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite
geomelry and coding theory, pages 139-157. Math. Centre Tracts, No. 55. Math.
Centrum, Amsterdam, 1974.

M. Deza, P. Frankl, and N. M. Singhi, On functions of strength ¢, Combinatorica,
3:331-339, 1983.

P. Frankl, Orthogonal vectors in the n-dimensional cube and codes with missing
distances, Combinatorica, 6:279-285, 1986.

P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences,

Combinatorica, 1(4):357-368, 1981.

Z. Furedi, On finite set-systems whose every intersection is a kernel of a star,

Discrete Math., 47(1):129-132, 1983.

V. Grolmusz, Set-systems with restricted multiple intersections and explicit Ram-
sey hypergraphs, Technical Report DIMACS TR 2001-04, DIMACS, January 2001.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2001/2001-
04.ps.gz.

D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math., 12:735—
744, 1975.

V. T. Sés, Some remarks on the connection of graph theory, finite geometry and
block designs, In Teorie Combinatorie; Proc. of the Collog. held in Rome 1973,
pages 223-233, 1976.



