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ABSTRACT

Alon, Kleitman, Lipton, Meshulam, Rabin and Spencer (Graphs. Combin. 7 (1991), no.
2, 97-99) proved, that for any hypergraph F = {Fy, Fy, ..., Fyq-1)41}, where ¢ is a prime-
power, and d denotes the maximal degree of the hypergraph, there exists an Fy C F, such
that |Uper, /| =0 (mod ¢). We give a direct, alternative proof for this theorem, and we
also give an explicit construction of a hypergraph of degree d and size Q(d*) which does not
contain a non-empty sub-hypergraph with a union of size 0 modulo 6.
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1 Introduction
Alon, Kleitman, Lipton, Meshulam, Rabin and Spencer [1] gave the following definition:

Definition 1 ([1]) For integers d,m > 1, let fi(m) denote the smallest t such that for any
hypergraph F = {F1, Fs, ..., Fi} with mazimum degree d there exists a non-emply Fo C F,
such that |Uper, F|=0 (mod m)

Baker and Schmidt [2] defined the following quantity:

Definition 2 For integers d,m > 1, let gq(m) denote the smallest t such that for any
polynomial h € Z[x1,xq,...,2: of degree d, satisfying h(0)=0, there exists an 0 # ¢ €
{0,1}", such that h(¢) =0 (mod m).

The following theorem was proven in [1]:

Theorem 3 ([1])
fa(m) = ga(m)

In the next section we give a natural one-to-one correspondence between polynomials
and hypergraphs, proving Theorem 3.

For p prime, and « positive integer it is known ([1], [2], [4]) that g4(p*) = d(p* — 1) + 1,
s0

Corollary 4 ([1]) For F = {F\, F;,..., Fyq-1)41}, where q is a prime-power, and d denotes
the mazimal degree of the hypergraph, there exists an ) # Fo C F, such that |Uper, F| =0
(mod gq).

This corollary is a generalization of the undergraduate exercise that from arbitrary m
integers, one can choose a non-empty subset, which adds up to 0 modulo m (the d = 1 case).
In 1991, Barrington, Beigel and Rudich [3] gave an explicit construction for polynomials

modulo m = pi*p3? ... pY", showing that

ga(m) = Q(d").
Since the proof of Theorem 3 (both the original and ours in the next section) gives explicit
constructions for hypergraphs from polynomials, the following corollary holds:

n X1, A2

Corollary 5 Let m = pi'p3®...p%7. Then there exists an explicitly constructible hypergraph
F of mazimum degree d, such that |F| = Q(d") and for each ) # Fo C F it is satisfied that

|Urer, F| #0 (mod m).

The authors of [1] gave a doubly-exponential upper bound to fz(m), which was based on
a Ramsey-theoretic bound of [2]. More recently, Tardos and Barrington [4] showed, that

fa(m) = exp(O(d™™)).
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2 Correspondence between polynomials and hyper-
graphs

We give here a short and direct proof for Theorem 3. Let () denote the set of rationals.
It is well known, that the set of functions {f : {0,1}' — @} forms a 2"-dimension vector
space over the rationals. One useful basis of this vectorspace is the set of OR-functions

{Viermi : T C{1,2,...,n}}, where

\/uzl—H(l—u)

1€l el

It is easy to see, that any integer-valued function on the hypercube can be written as the
integer-coeflicient linear combination of these OR-functions. Moreover, if the function is a
degree-d polynomial, then it is enough to use OR functions with |/| < d. If we consider
modulo m polynomials, then the coefficients can be restricted to the set {0,1,2,...,m —1}.
It will be convenient to view modulo m polynomials as the sum of several OR functions with
coefficient 1; instead of multiplying an OR function with a coefficient ¢ we will add it up
exactly a times.
Consequently, our degree-d modulo m polynomial has the following form:

h=S+S+- 45, (1)

where S; is an OR-function of degree at most d.

Now we are ready to define the one-to-one correspondence between degree-d modulo
m polynomials without non-trivial zeroes on the hypercube and and hypergraphs, with-
out non-empty sub-hypergraphs of modulo-m sum of 0. Let h be a degree-d polyno-
mial written in form (1), and define hypergraph F = {Fi, Fs,..., Fi}, where F; = {5, :
x; appears as a variable in S;}. Clearly, the degree of this hypergraph is at most the degree
of h, that is, d.

On the other hand, for a hypergraph F = {Fi, F,, ..., F;} on the ground-set
{v1,v2,..., 00}, let us define h(xy,x2,...,2:) = S1 4+ S+ -+ + 5;, where

SZ' = \/ Zj.
Ji €F)

Obviously, the degree of h is at most the degree of F.

Clearly, F has a non-empty sub-hypergraph with union-size 0 modulo m if and only
if there exists a 0 # = : h(z) = 0 (mod m). To prove this, it is enought to see that
I ={i:2; =1} is the same [ for which |U;c; ;| =0 (mod m).0
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